
Introduction to the LLVM
Compiler Framework

Christian Plessl

SS 2011

Paderborn Center for Parallel Computing
University of Paderborn

Version 1.0.1 – 26.04.2011

Motivation & Outline

•  brief overview of a state of the art compiler framework
–  we are using LLVM in our research
–  we will use it as an example in the lecture and in the exercises

•  outline
–  overview of the LLVM compiler framework
–  compilation tool flows
–  LLVM intermediate representations
–  optimizations
–  code generation

2

What is the LLVM Compiler Framework

•  modern open-source compiler infrastructure
–  implemented in C++
–  modular and extensible design
–  combines a static compilation tool flow with a virtual machine

•  many supported front-ends/languages
–  C, C++, Objective-C (Clang, GCC/dragonegg)
–  Ruby (Rubinius, MacRuby)
–  Python (unloaden swallow)
–  and many more

•  many supported CPU architectures in backend
–  ARM, Alpha, Intel x86, Microblaze, MIPS, PowerPC, SPARC, …

•  very popular and widely used
–  Apple, AMD, NVidia, Cray, Google, …

3

LLVM Design Principle

•  separation of the compilation process in frontend / analysis and
transformation / backend

•  LLVM intermediate representation (LLVM IR) plays a central
role in this process
–  all code optimizations are implemented as “LLVM IR to LLVM IR

transformation passes”
–  code analysis is also implemented as pass, generated results can be

shared between passes

•  all target processor-specific optimizations are handled in the
backend

4

Static LLVM Compilation Toolflow

5

frontend

optimizer

linker

optimizer

target code generator

assembler

system linker

virtual machine with
just-in-time code

generation

main.c, module1.c

main.bc, module1.bc

main.opt.bc, module1.opt.bc

program.opt.bc

program.bc

program.s

program.o

program (.exe)

clang, llvm-gcc

opt

execution with
virtual machine

opt

lli

llc

llvm-mc/gnu-as

gnu-ld

llvm-link

native execution (static compilation)

LLVM Intermediate Representation

•  basis for all LLVM optimization passes
•  low-level assembly language for a “virtual” processor

–  load/store architecture
–  infinite amount of named registers
–  each register is assigned exactly once (static single assignment, SSA)

•  exists in three equivalent representations
–  in-memory C++ data structures
–  binary files (LLVM bitcode) (file extension: .bc)
–  human readable assembly notation (file extension: .ll)

•  reference
–  http://llvm.org/docs/LangRef.html

6

LLVM IR Example

7

double circle_area(double radius) {
 return radius * radius * 3.14159265;
}

define double @circle_area(double %radius)
nounwind ssp {
 %1 = fmul double %radius, %radius
 %2 = fmul double %1, 0x400921FB53C8D4F1
 ret double %2
}

LLVM IR code

C code

note:
•  strongly typed data

types
•  each variable only

assigned once (static
single assignment)

clang -S -emit-llvm circle_area.c -o circle_area.ll
opt -mem2reg -instsimplify -S circle_area.ll -o circle_area.opt.ll

compiling with Clang frontend and LLVM

Running optimizations passes on LLVM IR

8

int test1(int x, int y, int z) {
 return (x & z) ^ (y & z);
}

C code

example
•  compile this code to LLVM IR
•  run series of optimization passes to

iteratively improve code

Running optimizations passes on LLVM IR 2

9

define i32 @test1(i32 %x, i32 %y, i32 %z)
nounwind ssp {
 %1 = alloca i32, align 4
 %2 = alloca i32, align 4
 %3 = alloca i32, align 4
 store i32 %x, i32* %1, align 4
 store i32 %y, i32* %2, align 4
 store i32 %z, i32* %3, align 4
 %4 = load i32* %1, align 4
 %5 = load i32* %3, align 4
 %6 = and i32 %4, %5
 %7 = load i32* %2, align 4
 %8 = load i32* %3, align 4
 %9 = and i32 %7, %8
 %10 = xor i32 %6, %9
 ret i32 %10
}

Compiled with Clang (no optimizations)
clang -S -emit-llvm boolean_optimization.c -o boolean_optimization.ll

properties of the
generated code
•  correct, but obviously

very inefficient
•  each function

argument is written to
the stack first …

•  … and read from the
stack later on

Running optimizations passes on LLVM IR 3

10

define i32 @test1(i32 %x, i32 %y, i32 %z)
nounwind ssp {
 %1 = and i32 %x, %z
 %2 = and i32 %y, %z
 %3 = xor i32 %1, %2
 ret i32 %3
}

First optimization (mem2reg, instsimplify)
opt -mem2reg -instsimplify -S boolean_optimization.ll -o boolean_optimization.opt.ll

properties of the generated code:
•  removed redundant instructions
•  used registers instead of stack memory
•  instructions of the actual computation remain unchanged

can this code be simplified any further?

Running optimizations passes on LLVM IR 4

11

define i32 @test1(i32 %x, i32 %y, i32 %z)
nounwind ssp {
 %1 = xor i32 %x, %y
 %2 = and i32 %1, %z
 ret i32 %2
}

Second optimization: instcombine
opt -mem2reg -instcombine -S boolean_optimization.ll -o boolean_optimization.opt.ll

properties of the generated code:
•  further simplification of the code
•  instcombine not only removes redundant

instructions but changes instructions
•  optimization pass did understand the semantics of

the boolean operations and figured out that
(x and z) xor (y and z) == z and (x xor y)

numerous additional optimizations available, consult opt manual page for
details

Static Single Assignment 1

•  LLVM IR uses static single assignment (SSA) form
–  each virtual register is assigned only once
–  allows to easily track define-use chains, i.e. what values are used by

which instructions (useful e.g. for dead code elimination)

•  what happens if we need to assign a register several times, e.g.
in a loop or in branches?

•  example

12

int max_square(int x, int y)
{
 int result = 0;

 if (x>y){
 result = x*x;
 } else {
 result = y*y;
 }
 return result;
}

result = 0
if x>y

result = x*x result = y*y

return result

control flow graph
without SSA

Static Single Assignment 2

•  use of phi-nodes/instructions (ɸ)
–  phi nodes keep track which control-flow path was taken and use the

corresponding value (like a multiplexer)
–  not actually implemented, compiler just makes sure that the virtual

registers are mapped to the same physical register

13

result = 0
if x>y

t1 = x*x t2 = y*y

result.0 =ɸ(t1,t2)
return result.0

control flow graph with SSA

B1

B2 B3

B4

define i32 @max_square(i32 %x, i32 %y) {
 %1 = icmp sgt i32 %x, %y
 br i1 %1, label %2, label %4

; <label>:2
 %3 = mul nsw i32 %x, %x
 br label %6

; <label>:4
 %5 = mul nsw i32 %y, %y
 br label %6

; <label>:6
 %result.0 = phi i32 [%3, %2], [%5, %4]
 ret i32 %result.0
}

choose reg %3 if control flow enters from BB %2,
choose reg %5 if control flow enters from BB %4

beginning and name of basic block

Visualizing Control Flow Graphs

•  LLVM has built-in support for visualizing various steps in the
compilation process

14

opt -view-cfg -S phi.opt.ll

Code Generation

•  example: using different backends, compilation for MIPS and
ARM instruction set

15

max_square:
BB#0:

 addiu $sp, $sp, -16
 slt $2, $5, $4
 beq $2, $zero, $BB0_2
 nop

BB#1:
 mult $4, $4
 j $BB0_3
 nop

$BB0_2:
 mult $5, $5

$BB0_3:
 mflo $2
 addiu $sp, $sp, 16
 jr $ra
 nop

_max_square: @ @max_square
@ BB#0:

 cmp r0, r1
 mulle r2, r1, r1
 mulgt r2, r0, r0
 mov r0, r2
 bx lr

llc --march=mips phi.ll -o phi.mips.s
llc --march=arm phi.ll -o phi.arm.s

MIPS assembler code

ARM assembler code

Summary

•  LLVM is a modern open source compiler framework
–  very powerful and easy to use
–  human readable IR allows for following optimization steps
–  modular design allows adding own functionality

•  LLVM may also be of practical use for you
–  as a replacement for GCC
–  for generating code for embedded processors
–  for learning about compilers and optimizations
–  building your own programming language (frontend) that uses LLVM as a

backend (search the web for inspiration)

•  acknowledgement
–  this presentation is based partly on materials that have been kindly

provided by Tobias Grosser (http://grosser.es/), visit his website for more
information on LLVM

16

Changes

•  2011-05-05 (v1.0.1)
–  fix a couple of minor typos

17

