
1

How OpenMP* is
Compiled

Acknowledgements:
Slides here were also contributed by the HPCTools

Group of the University of Houston.

Barbara Chapman, Lei Huang
University of Houston

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

2

How Does OpenMP Enable Us to
Exploit Threads?
OpenMP provides thread programming model at
a “high level”.

The user does not need to specify all the details
– Especially with respect to the assignment of work to threads
– Creation of threads

User makes strategic decisions
Compiler figures out details
Alternatives:

MPI
POSIX thread library is lower level
Automatic parallelization is even higher level (user does nothing)

– But usually successful on simple codes only

3

OpenMP Parallel Computing Solution Stack

Runtime library

OS/system support for shared memory.

Directives,
Compiler OpenMP library Environment

variables

Application

End User

Sy
st

em
 la

ye
r

P r
o g

. L
ay

er

(O
p e

n M
P

A
PI

)
U

se
r l

a y
e r

4

Recall Basic Idea: How OpenMP
Works

User must decide what is parallel in program
Makes any changes needed to original source code
E.g. to remove any dependences in parts that
should run in parallel

User inserts directives telling compiler how
statements are to be executed

what parts of the program are parallel
how to assign code in parallel regions to threads
what data is private (local) to threads

5

How The User Interacts with Compiler

Compiler generates explicit threaded code
shields user from many details of the multithreaded
code

Compiler figures out details of code each
thread needs to execute
Compiler does not check that programmer
directives are correct!

Programmer must be sure the required
synchronization is inserted

The result is a multithreaded object program

6

Recall Basic Idea of OpenMP

The program generated by the compiler is
executed by multiple threads

One thread per processor or core
Each thread performs part of the work

Parallel parts executed by multiple threads
Sequential parts executed by single thread

Dependences in parallel parts require
synchronization between threads

7

OpenMP Implementation

OpenMP
Fortran/C/C++

compiler

Annotated
Source Code

Sequential
Object Code

Parallel
Object CodeOpenMP

compilation

sequential
compilation

Program with
OpenMP
directives

With calls to
runtime library

8

OpenMP Implementation

If program is compiled sequentially
OpenMP comments and pragmas are ignored

If code is compiled for parallel execution
comments and/or pragmas are read, and
drive translation into parallel program

Ideally, one source for both sequential and
parallel program (big maintenance plus)

Usually this is accomplished by choosing a
specific compiler option

9

How is OpenMP Invoked ?
The user provides the required option or switch

Sometimes this also needs a specific optimization level,
so manual should be consulted
May also need to set threads’ stacksize explicitly

Examples of compiler options
Commercial:
-openmp (Intel, Sun, NEC), -mp (SGI, PathScale, PGI), --
openmp (Lahey, Fujitsu), -qsmp=omp (IBM) /openmp
flag (Microsoft Visual Studio 2005), etc.
Freeware: Omni, OdinMP, OMPi, OpenUH, …

Check information at http://www.compunity.org

http://www.compunity.org/

10

How Does OpenMP Really Work?

We have seen what the application
programmer does
States what is to be carried out in parallel by
multiple threads
Gives strategy for assigning work to threads
Arranges for threads to synchronize
Specify data sharing attributes: shared, private,
firstprivate, threadprivate,…

11

Overview of OpenMP Translation
Process

Compiler processes directives and uses them to create
explicitly multithreaded code
Generated code makes calls to a runtime library

The runtime library also implements the OpenMP user-level
run-time routines

Details are different for each compiler, but strategies
are similar
Runtime library and details of memory management
also proprietary
Fortunately the basic translation is not all that difficult

12

The OpenMP Implementation…
Transforms OpenMP programs into multi-threaded
code
Figures out the details of the work to be performed by
each thread
Arranges storage for different data and performs their
initializations: shared, private…
Manages threads: creates, suspends, wakes up,
terminates threads
Implements thread synchronization

The details of how OpenMP is implemented varies from one compiler
to another. We can only give an idea of how it is done here!!

13

Front End:
Read in source program, ensure that it is error-free, build
the intermediate representation (IR)

Middle End:
Analyze and optimize program as much as possible.
“Lower” IR to machine-like form

Back End:
Determine layout of program data in memory. Generate
object code for the target architecture and optimize it

Source
code

Front End Back End

Structure of a Compiler
Target
code

MiddleEnd

14

Compiler Sets Up Memory Allocation
At run time, code and objects must have locations

in memory. The compiler arranges for this
(Not all programming languages need a heap: e.g. Fortran 77

doesn’t, C does.)

Object code

Static, global data

stack

heap

• Stack and heap grow and shrink over time

• Grow toward each other

• Very old strategy
• Code, data may be interleaved

But in a multithreaded program,
each thread needs its own stack

15

OpenMP Compiler Front End
In addition to reading in the base language

(Fortran, C or C++)
Read (parse) OpenMP directives
Check them for correctness

Is directive in the right place? Is the information
correct? Is the form of the for loop permitted? ….

Create an intermediate representation with
OpenMP annotations for further handling

Nasty problem: incorrect OpenMP sentinel means
directive may not be recognized. And there might be
no error message!!

FE

ME

BE

Source code

object code

16

OpenMP Compiler Middle End

Preprocess OpenMP constructs
Translate SECTIONs to DO/FOR constructs
Make implicit BARRIERs explicit
Apply even more correctness checks

Apply some optimizations to code to
ensure it performs well

Merge adjacent parallel regions
Merge adjacent barriers

OpenMP directives reduce scope in which some
optimizations can be applied. Compiler writer must
work hard to avoid a negative impact on performance.

FE

ME

BE

Source code

object code

17

OpenMP Compiler: Rest of Processing
Translate OpenMP constructs to multithreaded code

Sometimes simple
– Replace certain OpenMP constructs by calls to runtime routines.
– e.g.: barrier, atomic, flush, etc

Sometimes a little more complex
– Implement parallel construct by creating a separate task that

contains the code in a parallel region
– For master thread: fork slave threads so they execute their tasks,

as well as carrying out the task along with slave threads.
– Add necessary synchronization via runtime library
– Translate parallel and worksharing constructs and clauses e.g.:

parallel, for, etc
Also implement variable data attributes, set up storage and
arrange for initialization

Thread’s stack might be used to hold all private data
Instantiate new variables to implement private, reduction, etc
Add assignment statements to realize firstprivate, lastprivate, etc

FE

ME

BE

Source code

object code

18

OpenUH Compiler Infrastructure

IPA
(Inter Procedural Analyzer)

Source code w/
OpenMP directives

Source code with
runtime library calls

Linking

CG
Gen. IA-64/IA-32/Opteron code

WOPT
(global scalar optimizer)

Object files

LOWER_MP
(Transformation of OpenMP)

A Native
Compiler

A Native
Compiler

Executables

A Portable OpenMP
Runtime library

A Portable OpenMP
Runtime library

FRONTENDS
(C/C++, Fortran 90, OpenMP)

O
pe

n6
4

C
om

pi
le

r i
nf

ra
st

ru
ct

ur
e

LNO
(Loop Nest Optimizer)

OMP_PRELOWER
(Preprocess OpenMP)

WHIRL2C & WHIRL2F
(IR-to-source for non-Itanium)

Collaboration between University of Houston and Tsinghua University

19

Implementing a Parallel Region:
Outlining
Compiler creates a new procedure containing

the region enclosed by a parallel construct
Each thread will execute this procedure
Shared data passed as arguments

Referenced via their address in routine
Private data stored on thread’s stack

Threadprivate may be on stack or heap
Outlining introduces a few overheads, but makes the
translation straightforward.

It makes the scope of OpenMP data attributes explicit.

20

An Outlining Example: Hello world
Original Code

#include <omp.h>
void main()
{
#pragma omp parallel
{
int ID=omp_get_thread_num();
printf(“Hello world(%d)”,ID);
}
}

Translated multi-threaded code with
runtime library calls

//here is the outlined code
void __ompregion_main1(…)
{
int ID =ompc_get_thread_num();
printf(“Hello world(%d)”,ID);
} /* end of ompregion_main1*/

void main()
{

…
__ompc_fork(&__ompregion_main1,…);

…
}

21

OpenMP Transformations –
Do/For

Transform original
loop so each thread
performs only its
own portion

Most of scheduling
calculations usually
hidden in runtime

Some extra work to
handle firstprivate,
lastprivate

Original Code
#pragma omp for
for(i = 0; i < n; i++)
{ …}

Transformed Code

tid = ompc_get_thread_num();
ompc_static_init (tid, lower,upper,
incr,.);
for(i = lower;i < upper;i += incr)
{ … }

// Implicit BARRIER
ompc_barrier();

22

OpenMP Transformations –
Reduction
Reduction variables
can be translated
into a two-step
operation
First, each thread
performs its own
reduction using a
private variable
Then the global
sum is formed
The compiler must
ensure atomicity of
the final reduction

Original Code
#pragma omp parallel for \
reduction (+:sum) private (x)
for(i=1;i<=num_steps;i++)
{ …
sum=sum+x ;}

Transformed Code
float local_sum;
…
ompc_static_init (tid, lower,uppder,
incr,.);
for(i = lower;i < upper;i += incr)
{ … local_sum = local_sum +x;}
ompc_barrier();
ompc_critical();
sum = (sum + local_sum);
ompc_end_critical();

23

OpenMP Transformation –
Single/Master

Master thread
has a threadid
of 0, very easy
to test for.
The runtime
function for the
single
construct might
use a lock to
test and set an
internal flag in
order to ensure
only one thread
get the work
done

Original Code
#pragma omp parallel
{#pragma omp master
a=a+1;

#pragma omp single
b=b+1;}

Transformed Code
Is_master= ompc_master(tid);

if((Is_master == 1))
{ a = a + 1; }
Is_single = ompc_single(tid);
if((Is_single == 1))
{ b = b + 1; }
ompc_barrier();

24

OpenMP Transformations –
Threadprivate

Original Code
static int px;

int foo() {
#pragma omp threadprivate(px)
bar(&px);
}
Transformed Code

static int px;
static int ** thdprv_px;

int _ompregion_foo1() {
int* local_px;
…

tid = ompc_get_thread_num();
local_px=get_thdprv(tid,thdprv_px,
&px);

bar(local_px);
}

Every threadprivate
variable reference
becomes an
indirect reference
through an
auxiliary structure
to the private copy
Every thread needs
to find its index into
the auxiliary
structure – This can
be expensive

Some OS’es (and
codegen schemes)
dedicate register
to identify thread
Otherwise
OpenMP runtime
has to do this

25

OpenMP Transformations –
WORKSHARE

Original Code
REAL AA(N,N), BB(N,N)
!$OMP PARALLEL
!$OMP WORKSHARE

AA = BB
!$OMP END WORKSHARE
!$OMP END PARALLEL

Transformed Code
REAL AA(N,N), BB(N,N)
!$OMP PARALLEL
!$OMP DO

DO J=1,N,1
DO I=1,N,1
AA(I,J) = BB(I,J)

END DO
END DO

!$OMP END PARALLEL

WORKSHARE can
be translated to
OMP DO during
preprocessing
phase

If there are several
different array
statements
involved, it requires
a lot of work by the
compiler to do a
good job

So there may be a
performance penalty

26

Runtime Memory Allocation

Outlining creates a new scope:
private data become local
variables for the outlined routine.
Local variables can be saved on
stack

Includes compiler-generated
temporaries
Private variables, including
firstprivate and lastprivate
Could be a lot of data
Local variables in a procedure
called within a parallel region are
private by default

Location of threadprivate data
depends on implementation

On heap
On local stack

Thread 0 stack

Main process stack

Heap

Global
Data …

Code
main()

__ompregion_main1()
…

Threadprivate

stack Thread 1 stack

…

….

Threadprivate

Local data

pointers to shared variables

Arg. Passed by value

registers

Program counter

One possible organization of memory

…

27

Role of Runtime Library
Thread management and work dispatch

Routines to create threads, suspend them and wake them up/
spin them, destroy threads
Routines to schedule work to threads

– Manage queue of work
– Provide schedulers for static, dynamic and guided

Maintain internal control variables
threadid, numthreads, dyn-var, nest-var, sched_var, etc

Implement library routines omp_..() and some simple
constructs (e.g. barrier, atomic)

Some routines in runtime library – e.g. to return the
threadid - are heavily accessed, so they must be carefully
implemented and tuned. The runtime library should avoid
any unnecessary internal synchronization.

28

Synchronization
Barrier is main synchronization construct since many
other constructs may introduce it implicitly. It in turn is
often implemented using locks.

void __ompc_barrier (omp_team_t *team)
{

…
pthread_mutex_lock(&(team->barrier_lock));
team->barrier_count++;
barrier_flag = team->barrier_flag;

/* The last one reset flags*/
if (team->barrier_count == team->team_size)
{

team->barrier_count = 0;
team->barrier_flag = barrier_flag ^ 1; /* Xor: toggle*/
pthread_mutex_unlock(&(team->barrier_lock));
return;

}
pthread_mutex_unlock(&(team->barrier_lock));

/* Wait for the last to reset the barrier*/
OMPC_WAIT_WHILE(team->barrier_flag == barrier_flag);

}

One simple way to implement barrier
• Each thread team maintains a barrier counter
and a barrier flag.

• Each thread increments the barrier counter
when it enters the barrier and waits for a
barrier flag to be set by the last one.

• When the last thread enters the barrier and
increment the counter, the counter will be
equal to the team size and the barrier flag is
reset.

• All other waiting threads can then proceed.

29

Constructs That Use a Barrier

Careful implementation can achieve modest overhead for most
synchronization constructs.
Parallel reduction is costly because it often uses critical region to
summarize variables at the end.

Synchronization Overheads (in cycles) on SGI Origin 2000*

* Courtesy of J. M. Bull, "Measuring Synchronisation and Scheduling Overheads in OpenMP", EWOMP '99, Lund, Sep., 1999.

30

Static Scheduling: Under The Hood
/ *Static even: static without specifying

chunk size; scheduler divides loop
iterations evenly onto each thread. */

// the outlined task for each thread
_gtid_s1 = __ompc_get_thread_num();
temp_limit = n – 1
__ompc_static_init(_gtid_s1 , static,

&_do_lower, &_do_upper, &_do_stride,..);
if(_do_upper > temp_limit)
{ _do_upper = temp_limit; }
for(_i = _do_lower; _i <= _do_upper; _i ++)
{

do_sth();
}

// The OpenMP code
// possible unknown loop upper bound: n
// unknown number of threads to be used
#pragma omp for schedule(static)
for (i=0;i<n;i++)
{
do_sth();

}

• Most (if not all) OpenMP compilers choose static as default scheduling
method
• Number of threads and loop bounds possibly unknown, so final details
usually deferred to runtime
• Two simple runtime library calls are enough to handle static case:

Constant overhead

31

Dynamic Scheduling : Under The Hood
_gtid_s1 = __ompc_get_thread_num();
temp_limit = n -1;

_do_upper = temp_limit;
_do_lower = 0;
__ompc_scheduler_init(__ompv_gtid_s1, dynamic ,do_lower, _do_upper, stride, chunksize..);
_i = _do_lower;
mpni_status = __ompc_schedule_next(_gtid_s1, &_do_lower, &_do_upper, &_do_stride);
while(mpni_status)
{
if(_do_upper > temp_limit)
{ _do_upper = temp_limit; }
for(_i = _do_lower; _i <= _do_upper; _i = _i + _do_stride)
{ do_sth(); }
mpni_status = __ompc_schedule_next(_gtid_s1, &_do_lower, &_do_upper, &_do_stride);

}

• Scheduling is performed during runtime.
• A while loop to grab available loop iterations from a work queue

•Similar way to implement STATIC with a chunk size and GUIDED scheduling

Average overhead= c1*(iteration space/chunksize)+c2

// Schedule(dynamic, chunksize)

32

Using OpenMP Scheduling Constructs

Scheduling Overheads (in cycles) on Sun HPC 3500*
Conclusion:

Use default static scheduling when work load is balanced and thread
processing capability is constant.
Use dynamic/guided otherwise

* Courtesy of J. M. Bull, "Measuring Synchronization and Scheduling Overheads in OpenMP", EWOMP '99, Lund, Sep., 1999.

33

Implementation-Defined Issues

OpenMP also leaves some issues to the
implementation

Default number of threads
Default schedule and default for schedule (runtime)
Number of threads to execute nested parallel
regions
Behavior in case of thread exhaustion
And many others..

Despite many similarities, each implementation is a little
different from all others.

34

Recap
OpenMP-aware compiler uses directives to generate code for each
thread
It also arranges for the program’s data to be stored in memory
To do this, it:

Creates a new procedure for each parallel region
Gets each thread to invoke this procedure with the required
arguments
Has each thread compute its set of iterations for a parallel loop
Uses runtime routines to implement synchronization as well as many
other details of parallel object code

Get to “know” a compiler by running microbenchmarks to see
overheads (visit http://www.epcc.ed.ac.uk/~jmbull for more)

http://www.epcc.ed.ac.uk/~jmbull

Thank you!

35

	How OpenMP* is Compiled
	How Does OpenMP Enable Us to Exploit Threads?
	OpenMP Parallel Computing Solution Stack
	Recall Basic Idea: How OpenMP Works
	How The User Interacts with Compiler
	Recall Basic Idea of OpenMP
	OpenMP Implementation
	OpenMP Implementation
	How is OpenMP Invoked ?
	How Does OpenMP Really Work?
	Overview of OpenMP Translation Process
	The OpenMP Implementation…
	Structure of a Compiler
	Compiler Sets Up Memory Allocation
	OpenMP Compiler Front End
	OpenMP Compiler Middle End
	OpenMP Compiler: Rest of Processing
	OpenUH Compiler Infrastructure
	Implementing a Parallel Region: Outlining
	An Outlining Example: Hello world
	OpenMP Transformations – Do/For
	OpenMP Transformations – Reduction
	OpenMP Transformation –Single/Master
	OpenMP Transformations – Threadprivate
	OpenMP Transformations – WORKSHARE
	Runtime Memory Allocation
	Role of Runtime Library
	Synchronization
	Constructs That Use a Barrier
	Static Scheduling: Under The Hood
	Dynamic Scheduling : Under The Hood
	Using OpenMP Scheduling Constructs
	Implementation-Defined Issues
	Recap
	Thank you!

