
CSCI-2500:
Computer Organization

Boolean Logic & Arithmetic for
Computers
(Chapter 3 and App. B)

CSCI-2500 SPRING 2016, Boolean Logic

• Developed by George Boole in the 1850s
• Mathematical theory of logic.

• Shannon was the first to use Boolean
Algebra to solve problems in electronic
circuit design. (1938)

Boolean Algebra

CSCI-2500 SPRING 2016, Boolean Logic

Variables & Operations
• All variables have the values 1 or 0

• sometimes we call the values TRUE / FALSE
• Three operators:

• OR written as +, as in
• AND written as •, as in
• NOT written as an overline, as in

BA+
BA ⋅

A

CSCI-2500 SPRING 2016, Boolean Logic

Operators: OR
• The result of the OR operator is 1 if

either of the operands is a 1.
• The only time the result of an OR is 0 is

when both operands are 0s.
• OR is like our old pal addition, but

operates only on binary values.

CSCI-2500 SPRING 2016, Boolean Logic

Operators: AND
• The result of an AND is a 1 only when

both operands are 1s.
• If either operand is a 0, the result is 0.

• AND is like our old nemesis
multiplication, but operates on binary
values.

CSCI-2500 SPRING 2016, Boolean Logic

Operators: NOT
• NOT is a unary operator – it operates on

only one operand.

• NOT negates its operand.

• If the operand is a 1, the result of the
NOT is a 0.

CSCI-2500 SPRING 2016, Boolean Logic

Equations
Boolean algebra uses equations to express

relationships. For example:

This equation expressed a relationship
between the value of X and the values
of A, B and C.

)(CBAX +⋅=

CSCI-2500 SPRING 2016, Boolean Logic

Examples

What is the value of each X:

1

)10(1

44

3

2

1

+=

⋅=

+=

+⋅=

XX
AAX
AAX

X

huh?

CSCI-2500 SPRING 2016, Boolean Logic

Laws of Boolean Algebra
Just like in good old algebra, Boolean

Algebra has postulates and
identities.

We can often use these laws to
reduce expressions or put
expressions in to a more desirable
form.

CSCI-2500 SPRING 2016, Boolean Logic

Basic Postulates of Boolean Algebra

• Using just the basic postulates –
everything else can be derived.

Commutative laws
Distributive laws

Identity
Inverse

CSCI-2500 SPRING 2016, Boolean Logic

Identity Laws

AA

AA

=⋅

=+

1

0

CSCI-2500 SPRING 2016, Boolean Logic

Inverse Laws

0

1

=⋅

=+

AA

AA

CSCI-2500 SPRING 2016, Boolean Logic

Commutative Laws

ABBA

ABBA

⋅=⋅

+=+

CSCI-2500 SPRING 2016, Boolean Logic

Distributive Laws

)()()(

)()()(

CABACBA

CABACBA

⋅+⋅=+⋅

+⋅+=⋅+

CSCI-2500 SPRING 2016, Boolean Logic

Other Identities

Can be derived from the basic postulates.

Laws of Ones and Zeros

Associative Laws

DeMorgan’s Theorems

CSCI-2500 SPRING 2016, Boolean Logic

Zero and One Laws

00

11

=⋅

=+

A

A Law of Ones

Law of Zeros

CSCI-2500 SPRING 2016, Boolean Logic

Associative Laws

CBACBA

CBACBA

⋅⋅=⋅⋅

++=++

)()(

)()(

CSCI-2500 SPRING 2016, Boolean Logic

DeMorgan’s Theorems

BABA

BABA

+=⋅

⋅=+

CSCI-2500 SPRING 2016, Boolean Logic

Other Operators
• Boolean Algebra is defined over the 3

operators AND, OR and NOT.
• this is a functionally complete set.

• There are other useful operators:
• NOR: is a 0 if either operand is a 1
• NAND: is a 0 only if both operands are 1
• XOR: is a 1 if the operands are different.

• NOTE: NOR or NAND is (by itself) a
functionally complete set!

CSCI-2500 SPRING 2016, Boolean Logic

Boolean Functions
• Boolean functions are functions that

operate on a number of Boolean
variables.

• The result of a Boolean function is itself
either a 0 or a 1.

• Example: f(a,b) = a+b

CSCI-2500 SPRING 2016, Boolean Logic

Alternative Representation
• We can define a Boolean function by

showing it using algebraic operations.

• We can also define a Boolean function
by listing the value of the function for
all possible inputs.

CSCI-2500 SPRING 2016, Boolean Logic

OR as a Boolean Function for(a,b)=a+b

a b for(a,b)
0 0 0
0 1 1
1 0 1
1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

Truth Tables

a b OR AND NOR NAN
D

XOR

0 0 0 0 1 1 0

0 1 1 0 0 1 1

1 0 1 0 0 1 1

1 1 1 1 0 0 0

CSCI-2500 SPRING 2016, Boolean Logic

Truth Table for (X+Y)·Z

X Y Z (X+Y)·Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

Gates
• Digital logic circuits are electronic circuits

that are implementations of some Boolean
function(s).

• A circuit is built up of gates, each gate
implements some simple logic function.

CSCI-2500 SPRING 2016, Boolean Logic

A Gate

???Inputs
OutputA

B
f(A,B)

CSCI-2500 SPRING 2016, Boolean Logic

Gates compute something!
• The output depends on the inputs.
• If the input changes, the output might

change.
• If the inputs don’t change – the output

does not change.

CSCI-2500 SPRING 2016, Boolean Logic

An OR gate

A

B
A+B

CSCI-2500 SPRING 2016, Boolean Logic

An AND gate

A

B
A•B

CSCI-2500 SPRING 2016, Boolean Logic

A NOT gate

A A

CSCI-2500 SPRING 2016, Boolean Logic

NAND and NOR gates

A•B
A

B

A

B
A+B

CSCI-2500 SPRING 2016, Boolean Logic

Combinational Circuits
• We can put gates together into circuits

• output from some gates are inputs to
others.

• We can design a circuit that represents
any Boolean function!

CSCI-2500 SPRING 2016, Boolean Logic

A Simple Circuit

A

B

?

CSCI-2500 SPRING 2016, Boolean Logic

Truth Table for our circuit

a b a b a • b a • b

0 0 1 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 1

CSCI-2500 SPRING 2016, Boolean Logic

Alternative Representations
• Any of these can express a Boolean

function. :
Boolean Equation

Circuit (Logic Diagram)
Truth Table

CSCI-2500 SPRING 2016, Boolean Logic

Implementation
• A logic diagram is used to design an

implementation of a function.

• The implementation is the specific gates
and the way they are connected.

• We can buy a bunch of gates, put them
together (along with a power source)
and build a machine.

CSCI-2500 SPRING 2016, Boolean Logic

Integrated Circuits
• You can buy an AND gate chip:

CSCI-2500 SPRING 2016, Boolean Logic

Function Implementation
• Given a Boolean function expressed as a

truth table or Boolean Equation, there
are many possible implementations.

• The actual implementation depends on
what kind of gates are available.

• In general we want to minimize the
number of gates.

CSCI-2500 SPRING 2016, Boolean Logic

Example: BABAf •+•=

A B f
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1
1 1 0 0 0

BA• BA•

CSCI-2500 SPRING 2016, Boolean Logic

One Implementation

BABAf •+•=
A

B

f

CSCI-2500 SPRING 2016, Boolean Logic

Another Implementation

A

B

f

() ()BABABABAf +•+=•+•=

CSCI-2500 SPRING 2016, Boolean Logic

Proof it’s the same function

() ()
() ()
()() ()()
() ()
() ()
() ()
() ()BAAB

BAAB

BAAB

BBBAABAA

BBAABA

BABA

BABA

BABA

+•+

=•••

=•+•

=•+•+•+•

=•++•+

=+•+

=•••

=•+• DeMorgan's Law

DeMorgan's Laws

Distributive

Distributive

Inverse, Identity

DeMorgan's Law

DeMorgan's Laws

Logic Design

CSCI-2500 SPRING 2016, Boolean Logic

Common Components
• There are many commonly used

components in processor design.
• We will use these components when we

design control systems (later).
• We will look at the functionality and

design of some of these components
now.

CSCI-2500 SPRING 2016, Boolean Logic

Some commonly used components

• Decoders: n inputs, 2n outputs.
• the inputs are used to select which output

is turned on.
• Multiplexors: 2n inputs, n selection bits,

1 output.
• the selection bits determine which input will

become the output.

CSCI-2500 SPRING 2016, Boolean Logic

2 input Decoder

Decoder

I0

I1

O0

O2

O1

O3

CSCI-2500 SPRING 2016, Boolean Logic

Decoder Truth Table

I0 I1 O0 O1 O2 O3
0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

CSCI-2500 SPRING 2016, Boolean Logic

Decoder Boolean Expressions

103

102

101

100

IIO

IIO

IIO

IIO

•=

•=

•=

•=

CSCI-2500 SPRING 2016, Boolean Logic

Decoder Implementation

I0I1

O0

O1

O2

O3

CSCI-2500 SPRING 2016, Boolean Logic

3 Input Decoder

Decoder

I0

I1

O0

O2

O1

O3
O4

O6

O5

O7

I3

CSCI-2500 SPRING 2016, Boolean Logic

3 Input Decoder Truth Table
I2 I1 I0 O0 O1 O2 O3 O4 O5 O6 O7
0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

CSCI-2500 SPRING 2016, Boolean Logic

3-Decoder Boolean Expressions

0127

0126

0125

0124

0123

0122

0121

2100

IIIO
IIIO

IIIO

IIIO

IIIO

IIIO

IIIO

IIIO

••=

••=

••=

••=

••=

••=

••=

••=

CSCI-2500 SPRING 2016, Boolean Logic

3-Decoder Partial Implementation

I0I1

O0

I2

O1

. . .

CSCI-2500 SPRING 2016, Boolean Logic

A Useful Simplification

The above logic diagram is often
abbreviated as shown below:

We can do this (without possible
confusion) because of the associative
property.

C

A
B A • B • C

C

A
B A • B • C

CSCI-2500 SPRING 2016, Boolean Logic

Revised Partial 3-Decoder
I0I1

O0

I2

O1

. . .

CSCI-2500 SPRING 2016, Boolean Logic

Multiple Input Or Gates

C

A
B

C

A
B A+B+C

A+B+C
A
B

C

A
B A+B+C+D

A+B+C+D
C
D

D

CSCI-2500 SPRING 2016, Boolean Logic

2 Input Multiplexor
Inputs: I0 and I1
Selector: S
Output: O

If S is a 0: O=I0
If S is a 1: O=I1

Mux

I0

I1

O

S

CSCI-2500 SPRING 2016, Boolean Logic

2-Mux Boolean Function
• The output depends on I0 and I1

• The output also depends on S !!!

• We must treat S as an input.

()S,I,IO 10f=

CSCI-2500 SPRING 2016, Boolean Logic

2-Mux Truth Table

S O

0 I0
1 I1

Abbreviated
Truth Table

S I0 I1 O0
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

2-Mux Boolean Expression

() ()SISIO •+•= 10

Since S can’t be both a 1 and a 0, only
one of the terms can be a 1.

terms

CSCI-2500 SPRING 2016, Boolean Logic

2-Mux Logic Design

I1I0S

O

CSCI-2500 SPRING 2016, Boolean Logic

4 Input Multiplexor
• If we have 4 inputs, we need to have 2

selection bits: S0 S1

S0 S1 O
0 0 I0
0 1 I1
1 0 I2
1 1 I3

Abbreviated
Truth Table

CSCI-2500 SPRING 2016, Boolean Logic

One Possible 4-Mux

2-Decoder

I0

I1

I2

I3

S0

S1
O

CSCI-2500 SPRING 2016, Boolean Logic

Common Implementations
• There are two general forms that are

used in many circuit implementations:
• Product of Sums

• A bunch of ORs leading to a big AND gate
• Sum of Products

• A bunch of ANDs leading to a big OR gate

CSCI-2500 SPRING 2016, Boolean Logic

Sum of Products
• Express the function by listing all the

combinations of inputs for which the output
should be a 1.

• These combinations are rows in the truth
table where the function has the value 1.

• Represent each combination with an AND
gate.

• OR all the AND gates to generate the output.

CSCI-2500 SPRING 2016, Boolean Logic

SOP Example: 2-Mux
Find rows in truth table where

the output is 1.

If S is 1 in that row, connect S
to a 3-input AND gate,
otherwise connect S.

Connect I0 and I1 in the same
way.

The AND gate corresponds to
the row in the truth table.

S I0 I1 O

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

S I0 I1 O

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

SOP Example: 2-Mux (cont).

S

I0
I1

If the output of this AND gate is a
1,the value of the function is a 1!

CSCI-2500 SPRING 2016, Boolean Logic

SOP Construction
• For each row on the truth table that has

the value 1 (the function has the value 1)
build the corresponding AND gate.

• Ignore all rows where the function has
the value 0!

• Connect the output of all the AND gates
to one big OR gate.

CSCI-2500 SPRING 2016, Boolean Logic

O

S I0 I1 O0
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

I0

I0

S

I1

I0
S

I1

I0

I1

S

I1

S

Truth Table

4-Mux Sum Of Products

CSCI-2500 SPRING 2016, Boolean Logic

Product of Sums
• Express the function by listing all the

combinations of inputs for which the output
should be a 0.

• These combinations are rows in the truth
table where the function has the value 0.

• Represent each combination with an OR gate.
• AND all the OR gates to generate the output.

CSCI-2500 SPRING 2016, Boolean Logic

POS Example: 2-Mux
Find rows in truth table where

the output is 0.

If S is 0 in that row, connect S
to a 3-input OR gate,
otherwise connect S.

Connect I0 and I1 in the same
way.

The OR gate corresponds to the
row in the truth table.

S I0 I1 O

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

S I0 I1 O

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

POS Example: 2-Mux (cont).

S

I0
I1

If the output of this OR gate is a 0,
the value of the function is a 0!

CSCI-2500 SPRING 2016, Boolean Logic

POS Construction
• For each row on the truth table that has

the value 0 (the function has the value
0) build the corresponding OR gate.

• Ignore all rows where the function has
the value 1!

• Connect the output of all the OR gates
to one big AND gate.

CSCI-2500 SPRING 2016, Boolean Logic

O

I0

I0

S

I1

I0

S

I1

I1

Truth Table

4-Mux Product of Sums

I0
I1

S

S
S I0 I1 O
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

Minimization
• SOP and POS forms provide a simple

translation from truth table to circuit.
• The resulting designs may involve more

gates than are necessary.
• There are a number of techniques used

to minimize such circuits.

CSCI-2500 SPRING 2016, Boolean Logic

Minimization Techniques
• Boolean Algebra

• use postulates and identities to reduce
expressions.

• Karnaugh Maps
• graphical technique useful for small circuits (no

more than 4 or 5 inputs)
• Tabular Methods

• suitable for large functions – usually done by a
computer program.

CSCI-2500 SPRING 2016, Boolean Logic

Karnaugh Map (K-map)
• Based on SOP form.
• It may be possible to merge terms.
• Example:

• Close inspection reveals that it doesn’t
matter what the value of A is!

• Here is a simpler version of the same
function:

() ()CBACBAf ••+••=

()CBf •=

CSCI-2500 SPRING 2016, Boolean Logic

Graphical Representation
• The idea is to draw a picture in which it

will be easy to see when terms can be
merged.

• We draw the truth table in 2-D, the
result is similar to a Venn Diagram

A B

C

CSCI-2500 SPRING 2016, Boolean Logic

K-Map Example

BABAf •+•=

A B f
0 0 0

0 1 1

1 0 0

1 1 1

B=0 B=1

A=0 0 1

A=1 0 1

Truth Table K-Map

In the K-Map it’s easy to see that
the value of A doesn’t matter

CSCI-2500 SPRING 2016, Boolean Logic

Ex 2: The Majority Function

• The majority function is 1 whenever
the majority of the inputs are 1.

• Here is an SOP Boolean equation for
the 3-input majority function:

CBACBACBACBAf ••+••+••+••=

CSCI-2500 SPRING 2016, Boolean Logic

K-Map for Majority Function

A B C f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Truth Table

K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

K-Map Construction
• Notice that any 2

adjacent cells differ
by exactly one bit in
the input.

• either A is different, or
B is different or C is
different.

• Never more then 1
variable is different!

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

How to use K-Map

K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

Rectangular collections of
cells that all have the
value 1 indicate it is
possible to merge the
corresponding terms in
SOP expression.

The number of cells in the
rectangle must be a
power of 2!

CSCI-2500 SPRING 2016, Boolean Logic

Possible Mergings
• There are 3 possible

mergings of terms in
this K-Map.

K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

One of the merges
• The merge shown

means “if C is 1 and B
is 1, it doesn’t matter
what the value of A
is”

K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

CBCBACBA •=••+••

CSCI-2500 SPRING 2016, Boolean Logic

All 3 reductions
K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

CBACBACBACBAf ••+••+••+••=Original:

Reduced: BACACBf •+•+•=

CSCI-2500 SPRING 2016, Boolean Logic

K-Map Concept
• A professional Logic Designer would

need to use minimization techniques
every day.

• We are just amateurs, so all we need to
know is the general idea.

• that there are systematic procedures for
minimizing SOP and POS form Boolean
equations.

CSCI-2500 SPRING 2016, Boolean Logic

Combinational vs. Sequential
• Combinational: output depends

completely on the value of the inputs.
• time doesn’t matter.

• Sequential: output also depends on the
state a little while ago.

• can depend on the value of the output some
time in the past.

CSCI-2500 SPRING 2016, Boolean Logic

Memory
• Think about how you might design a

combinational circuit that could be used
as a single bit memory.

• Use your memory to recall that the
output of a gate can change whenever
the inputs change.

CSCI-2500 SPRING 2016, Boolean Logic

Gate Timing

A
B

C

A

B

C

Δt Δt

CSCI-2500 SPRING 2016, Boolean Logic

Feedback

• What happens when A changes from 1 to
0?

A C

CSCI-2500 SPRING 2016, Boolean Logic

S-R latch

S

R

Q

Q

A B A nor B
0 0 1

0 1 0

1 0 0

1 1 0

CSCI-2500 SPRING 2016, Boolean Logic

S

R

Q

Q

Qt St Rt Qt+1
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0?

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0?

S-R latch Truth Table

If S and R = 1, then Q’s
output is undefined

CSCI-2500 SPRING 2016, Boolean Logic

S-R latch Timing S

R

Q

Q

Q

Q

S

R

1

0

1

0

1

0

1

0

Δt

Δt

2Δt

2Δt

CSCI-2500 SPRING 2016, Boolean Logic

Clocked S-R Latch
• Inside a computer we want the output

of gates to change only at specific
times.

• We can add some circuitry to make sure
that changes occur only when a clock
changes (when the clock changes from 0
to 1).

CSCI-2500 SPRING 2016, Boolean Logic

Clocked S-R Latch
S

R

Q

Q

Clock

• Q only changes when the Clock is a 1.
• If Clock is 0, neither S or R reach the NOR

gates.

CSCI-2500 SPRING 2016, Boolean Logic

What if S=R=1?
• The truth table shows ? when S=R=1.
• The value of Q is undetermined.

• The circuit is not stable.

• We can make sure that S=R !=1 now that
we have a clock.

CSCI-2500 SPRING 2016, Boolean Logic

Avoiding S=R=1: D Flip-Flop

D

Q

Q

Clock

CSCI-2500 SPRING 2016, Boolean Logic

D Flip-Flop D
Q

Q

Clock

• Now have only one input: D.

• If D is a 1 when the clock becomes 1, the
circuit will remember the value 1 (Q=1).

• If D is a 0 when the clock becomes 1, the
circuit will remember the value 0 (Q=0).

CSCI-2500 SPRING 2016, Boolean Logic

D Flip-Flop Timing

Q

D

Clock
1

0

1

0

1

0

CSCI-2500 SPRING 2016, Boolean Logic

8 Bit Memory
• We can use 8 D Flip-Flops to create an 8

bit memory.

• We have 8 inputs that we want to store,
all are written at the same time.

• all 8 flip-flops use the same clock.

CSCI-2500 SPRING 2016, Boolean Logic

8 Bit Memory D Flip-Flop
D

clock Q

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D0

D1

D3

D4

D5

D6

D2

D7
clock

Q0

Q1

Q3

Q4

Q5

Q6

Q2

Q7

CSCI-2500 SPRING 2016, Boolean Logic

Bits, Bytes & Words

CSCI-2500 SPRING 2016, Boolean Logic

Why Don’t Computers Use Base 10?
• Base 10 Number Representation

• That’s why fingers are known as “digits”
• Natural representation for financial transactions

• Floating point number cannot exactly represent $1.20
• Even carries through in scientific notation

• 1.5213 X 104

• Implementing Electronically
• Hard to store

• ENIAC (First electronic computer) used 10 vacuum tubes /
digit

• Hard to transmit
• Need high precision to encode 10 signal levels on single wire

• Messy to implement digital logic functions
• Addition, multiplication, etc.

CSCI-2500 SPRING 2016, Boolean Logic

Binary Representations
• Base 2 Number Representation

• Represent 1521310 as 111011011011012

• Represent 1.2010 as 1.0011001100110011[0011]…2

• Represent 1.5213 X 104 as 1.11011011011012 X 213

• Electronic Implementation
• Easy to store with bistable elements
• Reliably transmitted on noisy and inaccurate wires

• Straightforward implementation of arithmetic functions
0.0V
0.5V

2.8V
3.3V

0 1 0

CSCI-2500 SPRING 2016, Boolean Logic

Byte-Oriented Memory Organization
• Programs Refer to Virtual Addresses

• Conceptually very large array of bytes
• Actually implemented with hierarchy of different memory

types
• SRAM, DRAM, disk
• Only allocate for regions actually used by program

• In Unix and Windows NT, address space private to particular
“process”

• Program being executed
• Program can clobber its own data, but not that of others

• Compiler + Run-Time System Control Allocation
• Where different program objects should be stored
• Multiple mechanisms: static, stack, and heap
• In any case, all allocation within single virtual address space

CSCI-2500 SPRING 2016, Boolean Logic

Encoding Byte Values
• Byte = 8 bits

• Binary 000000002 to 111111112

• Decimal: 010 to 25510

• Hexadecimal 0016 to FF16

• Base 16 number representation
• Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
• Write FA1D37B16 in C as 0xFA1D37B

• Or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

CSCI-2500 SPRING 2016, Boolean Logic

Machine Words
• Machine Has “Word Size”

• Nominal size of integer-valued data
• Including addresses

• Most current machines are 32 bits (4 bytes)
• Limits addresses to 4GB
• Becoming too small for memory-intensive

applications
• High-end systems are 64 bits (8 bytes)

• Potentially address ≈ 1.8 X 1019 bytes
• Machines support multiple data formats

• Fractions or multiples of word size
• Always integral number of bytes

CSCI-2500 SPRING 2016, Boolean Logic

Word-Oriented Memory Organization

• Addresses Specify
Byte Locations

• Address of first
byte in word

• Addresses of
successive words
differ by 4 (32-bit)
or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

CSCI-2500 SPRING 2016, Boolean Logic

Data Representations
• Sizes of C Objects (in Bytes)

• C Data TypeCompaq AlphaTypical 32-bit
Intel IA32

• int 4 4 4
• long int 8 4 4
• char 1 1 1
• short 2 2 2
• float 4 4 4
• double 8 8 8
• long double 8 8 10/12
• char * 8 4 4

• Or any other pointer

CSCI-2500 SPRING 2016, Boolean Logic

Byte Ordering
• How should bytes within multi-byte word

be ordered in memory?
• Conventions

• Sun’s, Mac’s are “Big Endian” machines
• Least significant byte has highest address

• Alphas, PC’s are “Little Endian” machines
• Least significant byte has lowest address

CSCI-2500 SPRING 2016, Boolean Logic

Byte Ordering Example
• Big Endian

• Least significant byte has highest address
• Little Endian

• Least significant byte has lowest address
• Example

• Variable x has 4-byte representation 0x01234567
• Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

CSCI-2500 SPRING 2016, Boolean Logic

Reading Byte-Reversed Listings
• Disassembly

• Text representation of binary machine code
• Generated by program that reads the machine code

• Example Fragment
Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

• Deciphering Numbers
• Value: 0x12ab

• Pad to 4 bytes: 0x000012ab
• Split into bytes: 00 00 12 ab

• Reverse: ab 12 00 00

CSCI-2500 SPRING 2016, Boolean Logic

Examining Data Representations
• Code to Print Byte Representation of Data

• Casting pointer to unsigned char * creates byte
array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{

int i;
for (i = 0; i < len; i++)
printf("0x%p\t0x%.2x\n",

start+i, start[i]);
printf("\n");

}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

CSCI-2500 SPRING 2016, Boolean Logic

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux):
int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00

CSCI-2500 SPRING 2016, Boolean Logic

Representing Integers
• int A = 15213;
• int B = -15213;
• long int C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

Linux/Alpha A

3B
6D

00
00

Sun A

93
C4
FF
FF

Linux/Alpha B

C4
93

FF
FF

Sun B

Two’s complement representation
(Covered in future)

00
00
00
00

6D
3B
00
00

Alpha C

3B
6D

00
00

Sun C

6D
3B
00
00

Linux C

CSCI-2500 SPRING 2016, Boolean Logic

Representing Pointers
• int B = -15213;
• int *P = &B;

Alpha Address
Hex: 1 F F F F F C A 0

Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000

01
00
00
00

A0
FC
FF
FF

Alpha P

Sun Address
Hex: E F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & machines assign different locations to objects

FB
2C

EF
FF

Sun P

FF
BF

D4
F8

Linux P

Linux Address
Hex: B F F F F 8 D 4
Binary: 1011 1111 1111 1111 1111 1000 1101 0100

CSCI-2500 SPRING 2016, Boolean Logic

Representing Floats
• Float F = 15213.0;

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines

00
B4
6D
46

Linux/Alpha F

B4
00

46
6D

Sun F

Can see some relation to integer representation, but not obvious

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

CSCI-2500 SPRING 2016, Boolean Logic

n char S[6] =
"15213";

Representing Strings
• Strings in C

• Represented by array of characters
• Each character encoded in ASCII format

• Standard 7-bit encoding of character set
• Other encodings exist, but uncommon
• Character “0” has code 0x30

• Digit i has code 0x30+i
• String should be null-terminated

• Final character = 0
• Compatibility

• Byte ordering not an issue
• Data are single byte quantities

• Text files generally platform independent
• Except for different conventions of line termination

character(s)!

Linux/Alpha S Sun S

32
31

31
35

33
00

32
31

31
35

33
00

CSCI-2500 SPRING 2016, Boolean Logic

Machine-Level Code Representation
• Encode Program as Sequence of Instructions

• Each simple operation
• Arithmetic operation
• Read or write memory
• Conditional branch

• Instructions encoded as bytes
• Alpha’s, Sun’s, Mac’s use 4 byte instructions

• Reduced Instruction Set Computer (RISC)
• PC’s use variable length instructions

• Complex Instruction Set Computer (CISC)
• Different instruction types and encodings for different

machines
• Most code not binary compatible

• Programs are Byte Sequences Too!

CSCI-2500 SPRING 2016, Boolean Logic

Representing Instructions
• int sum(int x,
int y)

• {
• return x+y;
• }

Different machines use totally different instructions and encodings

00
00
30
42

Alpha sum

01
80
FA
6B

E0
08

81
C3

Sun sum

90
02
00
09

n For this example, Alpha & Sun
use two 4-byte instructions

n Use differing numbers of
instructions in other cases

n PC uses 7 instructions with
lengths 1, 2, and 3 bytes

n Same for NT and for Linux
n NT / Linux not fully binary

compatible

E5
8B

55
89

PC sum

45
0C
03
45
08
89
EC
5D
C3

CSCI-2500 SPRING 2016, Boolean Logic

Bit-Level Operations in C
• Operations &, |, ~, ^ Available in C

• Apply to any “integral” data type
• long, int, short, char

• View arguments as bit vectors
• Arguments applied bit-wise

• Examples (Char data type)
• ~0x41 --> 0xBE

~010000012 --> 101111102
• ~0x00 --> 0xFF

~000000002 --> 111111112
• 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012
• 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

CSCI-2500 SPRING 2016, Boolean Logic

Contrast: Logic Operations in C
• Contrast to Logical Operators

• &&, ||, !
• View 0 as “False”
• Anything nonzero as “True”
• Always return 0 or 1
• Early termination

• Examples (char data type)
• !0x41 --> 0x00
• !0x00 --> 0x01
• !!0x41 --> 0x01

• 0x69 && 0x55 --> 0x01
• 0x69 || 0x55 --> 0x01
• p && *p (avoids null pointer

access)

CSCI-2500 SPRING 2016, Boolean Logic

Shift Operations
• Left Shift: x << y

• Shift bit-vector x left y positions
• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y

• Shift bit-vector x right y positions
• Throw away extra bits on right

• Logical shift
• Fill with 0’s on left

• Arithmetic shift
• Replicate most significant bit on

right
• Useful with two’s complement

integer representation

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

CSCI-2500 SPRING 2016, Boolean Logic

Cool Stuff with Xor

void swap(int *x, int *y)
{

*x = *x ^ *y; /* #1 */
*y = *x ^ *y; /* #2 */
*x = *x ^ *y; /* #3 */

}

• Bitwise Xor is form
of addition

• With extra
property that every
value is its own
additive inverse

A ^ A = 0

BABegin
BA^B1

(A^B)^B = AA^B2
A(A^B)^A = B3
ABEnd

*y*x

Two’s Complement

CSCI-2500 SPRING 2016, Boolean Logic

Range of integers
• A mathematical integer ranges from - ∞ to +∞
• Consequently, a mathematical integer consists

of an unbounded number of bits.
• No computer can store all the integers in this

range (would require infinite storage).
• To use computer memory more efficiently, two

broad categories of integer representation have
been developed: unsigned integers and signed
integers.

CSCI-2500 SPRING 2016, Boolean Logic

Unsigned & signed integer arithmetic

• An unsigned integer ranges from 0 to +∞.

• The maximum unsigned integer that a
computer can store depends on the
number of bits the computer allocates to
store an unsigned integer.

CSCI-2500 SPRING 2016, Boolean Logic

Range of unsigned integers

of Bits

8
16
32

Range

0 .. 255
0 .. 65,535
0 .. 4,294,967,296

CSCI-2500 SPRING 2016, Boolean Logic

Range of unsigned integers
• Let's add 19 and 23

1 1 1 1 carry
0 0 0 1 0 0 1 1 19
0 0 0 1 0 1 1 1 23
0 0 1 0 1 0 1 0 42

CSCI-2500 SPRING 2016, Boolean Logic

Range of unsigned integers
• Given an 8-bit allocation, what happens when we add

250 and 8

11111010 250
+ 0001000 8

0000010 2

• The 1 bit that carries out of the left end of the
operation will be discarded. The answer we compute
will be 2, which is (250 + 8) modulo 256

CSCI-2500 SPRING 2016, Boolean Logic

Range of unsigned integers
• The previous problem arises when you try to store a

number that is not within the range defined by the
allocation.

• With an 8-bit allocation, the largest number that can be
stored is 255; however, the result of the addition is 258.

• Overflow is the term used for the condition that results
when there are insufficient bits to represent a number in
binary.

CSCI-2500 SPRING 2016, Boolean Logic

Signed 8-bit arithmetic

• So far we have concentrated on positive
numbers.

• There is no negative sign inside the
computer; therefore, we have to devise a
scheme for representing negative numbers.

• We will consider One's complement and
two's complement.

• For simplicity, we will use an 8-bit
representation.

CSCI-2500 SPRING 2016, Boolean Logic

Signed 8-bit arithmetic
• One's complement format of a number

• Change the number to binary, ignoring the
sign.

• Add 0s to the left of the binary number to
make a total of 8 bits

• If the sign is positive, no more action is
needed.

• If the sign is negative, complement every
bit (i.e. change from 0 to 1 or from 1 to 0)

CSCI-2500 SPRING 2016, Boolean Logic

Signed 8-bit arithmetic
• Write 25 in one's complement format

0 0 0 1 1 0 0 1 25 = (2^4 + 2^3 + 2^0)

• Write -25 in one's complement format
• Since the number is negative, complement

each bit
1 1 1 0 0 1 1 0 -25

CSCI-2500 SPRING 2016, Boolean Logic

Signed 8-bit arithmetic
• One's complement

• Negation is easy.
• Addition / subtraction is relatively easy…
• Range: -(2n-1 – 1) to +(2n-1 – 1)
• Drawback: Two values for 0

+0 00000000
-0 11111111

CSCI-2500 SPRING 2016, Boolean Logic

One's Complement to Decimal
• If the sign bit (the leftmost bit) is 0, convert

from binary to decimal.

• If the sign bit is 1 (negative number)
• complement the number
• convert the number to decimal
• put a negative sign in front of the number.

CSCI-2500 SPRING 2016, Boolean Logic

One's Complement to Decimal
• Convert the following 1's complement

representation to decimal:
• a) 11110001:

• Since the sign bit is 1, complement the
number: 00001110

• Convert to decimal: 000011102 = 1410
• Put a negative sign in front: -14

• b) 00011010
• Since the sign bit is 0, do not complement the

number, just do the direct binary to decimal
conversion.

• 2^4 + 2^3 + 2^1 = 26

CSCI-2500 SPRING 2016, Boolean Logic

Signed Arithmetic in 2's complement

• Most computers today use 2's complement
representation for negative numbers.

• The 2's complement of a negative number is
obtained by adding 1 to the 1's complement.
For -13:

00001101 base integer
11110010 1's complement

+1
11110011 2's complement

CSCI-2500 SPRING 2016, Boolean Logic

• Write -25 in two's complement format.
• +25 = 2^4 + 2^3 + 2^0 = 00011001
• Formats for -25 are:

• 1 1 1 0 0 1 1 0 one's complement
• 1 1 1 0 0 1 1 1 two's complement

Signed Arithmetic in 2's complement

CSCI-2500 SPRING 2016, Boolean Logic

• To add two integers in two's complement,
add two bits and propagate the carry to the
next column. If there is a final carry after
the leftmost column addition, discard it.

Add -25 and 20:
1 1 1 0 0 1 1 1 (-25)
0 0 0 1 0 1 0 0 (20)
1 1 1 1 1 0 1 1

Signed Arithmetic in 2's complement

CSCI-2500 SPRING 2016, Boolean Logic

• Since the negative of any number is its two's
complement, the sum of a number and its two's
complement is always 0

• The difference, a – b, is computed as a +
twos_complement(b) (i.e., flip bits and add 1)

Signed Arithmetic in 2's complement

CSCI-2500 SPRING 2016, Boolean Logic

• Add +12 and -12
+12 = 000011002

-12 = 111101002

0 000000002

Signed Arithmetic in 2's complement

CSCI-2500 SPRING 2016, Boolean Logic

• Two's complement
• Negation is easy
• Addition / subtraction is easy
• One value for zero.
• Range: -(2n-1) to +(2n-1 – 1)
• Conversion:

• If the sign bit is 0, convert the binary number to
decimal.

• If the sign bit is 1 subtract 1 from the binary
number

• complement each bit
• convert the binary number to decimal
• put a minus sign in front

Summary: 2's complement

Constructing an ALU

CSCI-2500 SPRING 2016, Boolean Logic

Arithmetic Logic Unit
• The device that performs the

arithmetic operations and logic
operations.

• arithmetic ops: addition, subtraction
• logic operations: AND, OR

• For MIPS we need a 32 bit ALU
• can add 32 bit numbers, etc.

CSCI-2500 SPRING 2016, Boolean Logic

Starting Small
• We can start by designing a 1 bit ALU.
• Put a bunch of them together to make

larger ALUs.
• building a larger unit from a 1 bit unit is

simple for some operations, can be tricky
for others.

• Bottom-Up approach:
• build small units of functionality and put

them together to build larger units.

CSCI-2500 SPRING 2016, Boolean Logic

1 bit AND/OR machine

• We want to design a single box that
can compute either AND or OR.

• We will use a control input to
determine which operation is
performed.

• Name the control “Op”.
• if Op==0 do an AND
• if Op==1 do an OR

CSCI-2500 SPRING 2016, Boolean Logic

Truth Table For 1-bit AND/OR

Op A B Result

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

A
B
Op

Result

Op=0: Result is A•B

Op=1: Result is A+B

CSCI-2500 SPRING 2016, Boolean Logic

Logic for 1-Bit AND/OR

• We could derive SOP or POS and build
the corresponding logic.

• We could also just do this:
• Feed both A and B to an OR gate.
• Feed A and B to an AND gate.
• Use a 2-input MUX to pick which one will

be used.
• Op is the selection input to the MUX.

CSCI-2500 SPRING 2016, Boolean Logic

Logic Design for 1-Bit AND/OR

Mux Result

A

B

Op

CSCI-2500 SPRING 2016, Boolean Logic

Addition A painful reminder of the test

• We need to build a 1 bit adder
• compute binary addition of 2 bits.

• We already know that the result is 2
bits.
A B O0 O1
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A
+ B
O0 O1

This is addition,
not logical OR!

CSCI-2500 SPRING 2016, Boolean Logic

One Implementation

A
B O0

A
B

A
B

O1

CSCI-2500 SPRING 2016, Boolean Logic

Binary addition and our adder

What we really want is something that can
be used to implement the binary
addition algorithm.

• O0 is the carry
• O1 is the sum

01001
+ 01101

10110

11 Carry

CSCI-2500 SPRING 2016, Boolean Logic

What about the second column?

• We are adding 3 bits
• new bit is the carry from the first column.
• The output is still 2 bits, a sum and a carry

01001
+ 01101

10110

11 Carry

CSCI-2500 SPRING 2016, Boolean Logic

Revised Truth Table for Addition

A B Carry
In

Carry
Out

Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

Logic Design for new adder
• We can derive SOP expressions from

the truth table.

• We can build a combinational circuit
that implements the SOP expressions.

• We can put it in a box and give it a
name.

CSCI-2500 SPRING 2016, Boolean Logic

New Component: Adder

adder
A

B

Carry In

Carry Out

Sum

CSCI-2500 SPRING 2016, Boolean Logic

1 Bit ALU

• Combine the AND/OR with the adder.
• We must now use a 4-input MUX with

2 selection inputs.

AND OR add

CSCI-2500 SPRING 2016, Boolean Logic

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

CSCI-2500 SPRING 2016, Boolean Logic

Building a 32 bit ALU

• 64 inputs
• 3 different Operations (AND,OR,add).
• 32 bit output

A0 A1 … A31 B0 B1 … B31
……

Op

R0 R1 … R31

…

Result

CSCI-2500 SPRING 2016, Boolean Logic

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

Ripple Carry Adder

• Carry out from ALU0 is
sent to carry in of ALU1

• How long will it take for
the result to become
available?
• the CarryOuts must

propagate through all
32 1-Bit ALUs.

CSCI-2500 SPRING 2016, Boolean Logic

New Operation: Subtraction
• Subtraction can be done with an adder:

A - B can be computed as A + -B

• To negate B we need to:
• invert the bits.
• add 1

CSCI-2500 SPRING 2016, Boolean Logic

Negating B in the ALU
• We can negate B by in the ALU by:

• providing B to the adder.
• need a selection bit to do this.

• To add 1, just set the initial carry in to
1!

CSCI-2500 SPRING 2016, Boolean Logic

Revised 1 Bit ALU

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

CSCI-2500 SPRING 2016, Boolean Logic

Uses for our ALU
• addition, subtraction, OR and AND

instructions can be implemented with
our ALU.

• we still need to get the right values to the
ALU and set control lines.

• We can also support the slt instruction.
• need to add a little more to the 1 bit ALU.

CSCI-2500 SPRING 2016, Boolean Logic

Supporting slt

slt needs to compare 2 numbers.
• comparison requires a subtraction.

if A-B is negative, then A<B is true.
otherwise A<B is false.

True: output should be 0000000…001
False: output should be 0000000…000

CSCI-2500 SPRING 2016, Boolean Logic

slt Strategy

• To compute slt A B:
• subtract B from A (set binvert and

the L.S. Carry In to 1.
• Result for all 1-bit ALUs except the LS

should always be 0.
• Result for the LS 1-bit ALU should be

the result bit from the MS 1-bit ALU!
LS: Least significant (rightmost)

MS: Most significant (leftmost)

CSCI-2500 SPRING 2016, Boolean Logic

New 1-bit ALU

0

3

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

C a r r y O u t

0

1

B i n v e r t

b 2

L e s s

CSCI-2500 SPRING 2016, Boolean Logic

MSB ALU

0

3

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

0

1

B i n v e r t

b 2

L e s s

S e t

O v e r f l o w

d e t e c t i o n
O v e r f l o w

.

CSCI-2500 SPRING 2016, Boolean Logic

New 32-bit ALU

Set
a31

0

ALU0 Result0

CarryIn

a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

• Less input is 0 for
all but the LS.

• Result of addition in
the MS ALU is fed
back to the Less
input of the LS ALU

CSCI-2500 SPRING 2016, Boolean Logic

Put it in a box and give it a name

ALU Result
Zero

Overflow

a

b

ALU operation

CarryOut

CSCI-2500 SPRING 2016, Boolean Logic

Speed is important.
• Using a ripple carry adder the time it

takes to do an addition is too long.
• each 1-bit ALU has something like 2 levels

of gates.
• The input to the ith ALU includes an output

from the i-1th ALU.
• For 32 bits we have something like 64 gate

delays before the addition is complete.

CSCI-2500 SPRING 2016, Boolean Logic

Strategies for speeding things up.
• We could derive the truth table for

each of the 32 result bits as a function
of 64 inputs.

• We know we can build SOP expressions
for each and implement using 2 levels of
gates.

• This might be a good test question!
• don’t worry, you would need so much paper I

couldn’t carry the tests to class…

CSCI-2500 SPRING 2016, Boolean Logic

A more realistic approach
• The problem is the ripple

• The last carry-in is takes a long time to
compute.

• We can try to compute the carry-in bits
as fast as possible

• this is called carry lookahead
• It turns out we can easily compute the

carry-in bits much faster (but not in
constant time).

CSCI-2500 SPRING 2016, Boolean Logic

Carry In Analysis
• CarryIni is an input to

the ith 1 bit adder.

• CarryOuti-1 is
connected to CarryIni

• We know about how to
compute the
CarryOuts

A B Cary
In

Cary
Out

Sum

0 0 0 0 0

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

CSCI-2500 SPRING 2016, Boolean Logic

Computing Carry Bits
• CarryIn0 is an input to the adder.

• we don’t compute this – it’s an input.
• CarryIn1 depends on A0, B0 and CarryIn0:

CarryIn1 = (B0• CarryIn0) + (A0 • CarryIn0)+(A0 • B0)

SOP: Requires 2 levels of gates

CSCI-2500 SPRING 2016, Boolean Logic

CarryIn2

CarryIn2 = (B1• CarryIn1) + (A1 • CarryIn1)+(A1 • B1)

We can substitute for CarryIn1 and get this mess:

CarryIn2 = (B1• B0• CarryIn0) + (B1• A0 •
CarryIn0)+(B1• A0 • B0) + (A1 • B0• CarryIn0) + (A1
• A0 • CarryIn0)+(A1 • A0 • B0)+(A1 • B1)

The size of these expressions will get too big
(that’s the whole problem!).

CSCI-2500 SPRING 2016, Boolean Logic

Another way to describe CarryIn

Ci+1 = (Bi• Ci) + (Ai • Ci)+(Ai • Bi)
= (Ai • Bi) + (Ai + Bi) •Ci

Ai • Bi : Call this Generate (Gi)
Ai + Bi : Call this Propagate (Pi)

Ci+1 = Gi + Pi • Ci

CSCI-2500 SPRING 2016, Boolean Logic

Generate and Propagate

• When Ai and Bi are both 1, Gi becomes a 1.
• a CarryOut is generated.

• If Pi is a 1, any Carry in is propagated to Carry
Out.

Ci+1 = Gi + Pi • Ci

Gi =Ai • Bi

Pi =Ai + Bi

CSCI-2500 SPRING 2016, Boolean Logic

Using Gi and Pi

C1 = G0+P0•C0

C2 = G1+P1•C1

= G1+ P1• (G0+P0•C0)
= G1+ P1• G0 + P1• P0•C0

C3 = G2 + P2•G1 + P2•P1•G0 + P2•P1•P0•C0

CSCI-2500 SPRING 2016, Boolean Logic

Implementation
• Expression still get too big to handle

(for 32 bits).
• We can minimize the time needed to

compute all the CarryIn bits for a 4 bit
adder.

• Connect a bunch of 4 bit adders
together and treat CarryIns to these
adders in the same manner.

CSCI-2500 SPRING 2016, Boolean Logic

CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

Carry-lookahead unit

