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• Developed by George Boole in the 1850s
• Mathematical theory of logic.

• Shannon was the first to use Boolean 
Algebra to solve problems in electronic 
circuit design. (1938)

Boolean Algebra
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Variables & Operations
• All variables have the values 1 or 0

• sometimes we call the values TRUE / FALSE
• Three operators:

• OR written as +, as in
• AND written as •, as in
• NOT written as an overline, as in

BA+
BA ⋅

A
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Operators: OR
• The result of the OR operator is 1 if 

either of the operands is a 1. 
• The only time the result of an OR is 0 is 

when both operands are 0s.
• OR is like our old pal addition, but 

operates only on binary values.  
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Operators: AND
• The result of an AND is a 1 only when 

both operands are 1s.
• If either operand is a 0, the result is 0.

• AND is like our old nemesis 
multiplication, but operates on binary 
values.
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Operators: NOT
• NOT is a unary operator – it operates on 

only one operand.

• NOT negates its operand.

• If the operand is a 1, the result of the 
NOT is a 0.
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Equations
Boolean algebra uses equations to express 

relationships. For example:

This equation expressed a relationship 
between the value of X and the values 
of A, B and C.

)( CBAX +⋅=
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Examples

What is the value of each X:

1

)10(1

44

3

2

1

+=

⋅=

+=

+⋅=

XX
AAX
AAX

X

huh?
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Laws of Boolean Algebra
Just like in good old algebra, Boolean 

Algebra has postulates and 
identities.

We can often use these laws to 
reduce expressions or put 
expressions in to a more desirable 
form.
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Basic Postulates of Boolean Algebra

• Using just the basic postulates –
everything else can be derived.

Commutative laws
Distributive laws

Identity
Inverse
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Identity Laws

AA

AA

=⋅

=+

1

0
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Inverse Laws

0

1

=⋅

=+

AA

AA
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Commutative Laws

ABBA

ABBA

⋅=⋅

+=+
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Distributive Laws

)()()(

)()()(

CABACBA

CABACBA

⋅+⋅=+⋅

+⋅+=⋅+
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Other Identities

Can be derived from the basic postulates. 

Laws of Ones and Zeros

Associative Laws

DeMorgan’s Theorems
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Zero and One Laws

00

11

=⋅

=+

A

A Law of Ones

Law of Zeros



CSCI-2500 SPRING 2016, Boolean Logic

Associative Laws

CBACBA

CBACBA

⋅⋅=⋅⋅

++=++

)()(

)()(
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DeMorgan’s Theorems

BABA

BABA

+=⋅

⋅=+
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Other Operators
• Boolean Algebra is defined over the 3 

operators AND, OR and NOT.
• this is a functionally complete set.

• There are other useful operators:
• NOR: is a 0 if either operand is a 1
• NAND: is a 0 only if both operands are 1
• XOR: is a 1 if the operands are different.

• NOTE: NOR or NAND is (by itself) a 
functionally complete set!
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Boolean Functions
• Boolean functions are functions that 

operate on a number of Boolean 
variables.

• The result of a Boolean function is itself 
either a 0 or a 1.

• Example: f(a,b) = a+b
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Alternative Representation
• We can define a Boolean function by 

showing it using algebraic operations.

• We can also define a Boolean function 
by listing the value of the function for 
all possible inputs.
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OR as a Boolean Function for(a,b)=a+b

a b for(a,b)
0 0 0
0 1 1
1 0 1
1 1 1
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Truth Tables

a b OR AND NOR NAN
D

XOR

0 0 0 0 1 1 0

0 1 1 0 0 1 1

1 0 1 0 0 1 1

1 1 1 1 0 0 0
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Truth Table for (X+Y)·Z

X Y Z (X+Y)·Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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Gates
• Digital logic circuits are electronic circuits 

that are implementations of some Boolean 
function(s).

• A circuit is built up of gates, each gate
implements some simple logic function.
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A Gate

???Inputs
OutputA

B
f(A,B)
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Gates compute something!
• The output depends on the inputs.
• If the input changes, the output might 

change.
• If the inputs don’t change – the output 

does not change.
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An OR gate

A

B
A+B
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An AND gate

A

B
A•B
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A NOT gate

A A
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NAND and NOR gates

A•B
A

B

A

B
A+B
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Combinational Circuits
• We can put gates together into circuits

• output from some gates are inputs to 
others.

• We can design a circuit that represents 
any Boolean function!
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A Simple Circuit

A

B

?
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Truth Table for our circuit

a b a b a • b a • b

0 0 1 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 1
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Alternative Representations
• Any of these can express a Boolean 

function. :
Boolean Equation

Circuit (Logic Diagram)
Truth Table
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Implementation 
• A logic diagram is used to design an 

implementation of a function.

• The implementation is the specific gates 
and the way they are connected.

• We can buy a bunch of gates, put them 
together (along with a power source) 
and build a machine.
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Integrated Circuits
• You can buy an AND gate chip:
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Function Implementation 
• Given a Boolean function expressed as a 

truth table or Boolean Equation, there 
are many possible implementations.

• The actual implementation depends on 
what kind of gates are available.

• In general we want to minimize the 
number of gates.
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Example: BABAf •+•=

A B f
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1
1 1 0 0 0

BA• BA•
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One Implementation

BABAf •+•=
A

B

f
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Another Implementation

A

B

f

( ) ( )BABABABAf +•+=•+•=
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Proof it’s the same function

( ) ( )
( ) ( )
( )( ) ( )( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )BAAB

BAAB

BAAB

BBBAABAA

BBAABA

BABA

BABA

BABA

+•+

=•••

=•+•

=•+•+•+•

=•++•+

=+•+

=•••

=•+• DeMorgan's Law

DeMorgan's Laws

Distributive

Distributive

Inverse, Identity

DeMorgan's Law

DeMorgan's Laws



Logic Design 
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Common Components
• There are many commonly used 

components in processor design.
• We will use these components when we 

design control systems (later).
• We will look at the functionality and 

design of some of these components 
now.
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Some commonly used components

• Decoders: n inputs, 2n outputs.
• the inputs are used to select which output 

is turned on.
• Multiplexors: 2n inputs, n selection bits, 

1 output.
• the selection bits determine which input will 

become the output.
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2 input Decoder

Decoder

I0

I1

O0

O2

O1

O3
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Decoder Truth Table

I0 I1 O0 O1 O2 O3
0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1
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Decoder Boolean Expressions

103

102

101

100

IIO

IIO

IIO

IIO

•=

•=

•=

•=
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Decoder Implementation

I0I1

O0

O1

O2

O3
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3 Input Decoder

Decoder

I0

I1

O0

O2

O1

O3
O4

O6

O5

O7

I3
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3 Input Decoder Truth Table
I2 I1 I0 O0 O1 O2 O3 O4 O5 O6 O7
0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1
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3-Decoder Boolean Expressions

0127

0126

0125

0124

0123

0122

0121

2100

IIIO
IIIO

IIIO

IIIO

IIIO

IIIO

IIIO

IIIO

••=

••=

••=

••=

••=

••=

••=

••=
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3-Decoder Partial Implementation

I0I1

O0

I2

O1

. . .



CSCI-2500 SPRING 2016, Boolean Logic

A Useful Simplification

The above logic diagram is often 
abbreviated as shown below:

We can do this (without possible 
confusion) because of the associative 
property.

C

A
B A • B • C

C

A
B A • B • C
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Revised Partial 3-Decoder
I0I1

O0

I2

O1

. . .
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Multiple Input Or Gates

C

A
B

C

A
B A+B+C

A+B+C
A
B

C

A
B A+B+C+D

A+B+C+D
C
D

D
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2 Input Multiplexor
Inputs: I0 and I1
Selector: S
Output: O

If S is a 0:   O=I0
If S is a 1:   O=I1

Mux

I0

I1

O

S
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2-Mux Boolean Function
• The output depends on I0 and I1

• The output also depends on S !!!

• We must treat S as an input.

( )S,I,IO 10f=
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2-Mux Truth Table

S O

0 I0
1 I1

Abbreviated
Truth Table

S I0 I1 O0
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
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2-Mux Boolean Expression

( ) ( )SISIO •+•= 10

Since S can’t be both a 1 and a 0, only 
one of the terms can be a 1.

terms
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2-Mux Logic Design

I1I0S

O
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4 Input Multiplexor
• If we have 4 inputs, we need to have 2 

selection bits: S0 S1

S0 S1 O
0 0 I0
0 1 I1
1 0 I2
1 1 I3

Abbreviated
Truth Table



CSCI-2500 SPRING 2016, Boolean Logic

One Possible 4-Mux

2-Decoder

I0

I1

I2

I3

S0

S1
O
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Common Implementations
• There are two general forms that are 

used in many circuit implementations:
• Product of Sums

• A bunch of ORs leading to a big AND gate
• Sum of Products

• A bunch of ANDs leading to a big OR gate
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Sum of Products
• Express the function by listing all the 

combinations of inputs for which the output 
should be a 1.

• These combinations are rows in the truth 
table where the function has the value 1.

• Represent each combination with an AND 
gate.

• OR all the AND gates to generate the output.
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SOP Example: 2-Mux 
Find rows in truth table where 

the output is 1.

If S is 1 in that row, connect S
to a 3-input AND gate, 
otherwise connect S.

Connect I0 and I1 in the same 
way.

The AND gate corresponds to 
the row in the truth table.

S I0 I1 O

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
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S I0 I1 O

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

SOP Example: 2-Mux (cont).

S

I0
I1

If the output of this AND gate is a 
1,the value of the function is a 1!
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SOP Construction
• For each row on the truth table that has 

the value 1 (the function has the value 1) 
build the corresponding AND gate.

• Ignore all rows where the function has 
the value 0!

• Connect the output of all the AND gates 
to one big OR gate.
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O

S I0 I1 O0
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

I0

I0

S

I1

I0
S

I1

I0

I1

S

I1

S

Truth Table

4-Mux Sum Of Products
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Product of Sums
• Express the function by listing all the 

combinations of inputs for which the output 
should be a 0.

• These combinations are rows in the truth 
table where the function has the value 0.

• Represent each combination with an OR gate.
• AND all the OR gates to generate the output.
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POS Example: 2-Mux 
Find rows in truth table where 

the output is 0.

If S is 0 in that row, connect S
to a 3-input OR gate, 
otherwise connect S.

Connect I0 and I1 in the same 
way.

The OR gate corresponds to the 
row in the truth table.

S I0 I1 O

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
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S I0 I1 O

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

POS Example: 2-Mux (cont).

S

I0
I1

If the output of this OR gate is a 0, 
the value of the function is a 0!
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POS Construction
• For each row on the truth table that has 

the value 0 (the function has the value 
0) build the corresponding OR gate.

• Ignore all rows where the function has 
the value 1!

• Connect the output of all the OR gates 
to one big AND gate.
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O

I0

I0

S

I1

I0

S

I1

I1

Truth Table

4-Mux Product of Sums

I0
I1

S

S
S I0 I1 O
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
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Minimization
• SOP and POS forms provide a simple 

translation from truth table to circuit.
• The resulting designs may involve more 

gates than are necessary.
• There are a number of techniques used 

to minimize such circuits.
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Minimization Techniques
• Boolean Algebra

• use postulates and identities to reduce 
expressions.

• Karnaugh Maps
• graphical technique useful for small circuits (no 

more than 4 or 5 inputs)
• Tabular Methods

• suitable for large functions – usually done by a 
computer program.
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Karnaugh Map (K-map)
• Based on SOP form.
• It may be possible to merge terms.
• Example:

• Close inspection reveals that it doesn’t 
matter what the value of A is!

• Here is a simpler version of the same 
function:

( ) ( )CBACBAf ••+••=

( )CBf •=
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Graphical Representation
• The idea is to draw a picture in which it 

will be easy to see when terms can be 
merged.

• We draw the truth table in 2-D, the 
result is similar to a Venn Diagram

A B

C
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K-Map Example

BABAf •+•=

A B f
0 0 0

0 1 1

1 0 0

1 1 1

B=0 B=1

A=0 0 1

A=1 0 1

Truth Table K-Map

In the K-Map it’s easy to see that
the value of A doesn’t matter
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Ex 2: The Majority Function  

• The majority function is 1 whenever 
the majority of the inputs are 1.

• Here is an SOP Boolean equation for 
the 3-input majority function:

CBACBACBACBAf ••+••+••+••=
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K-Map for Majority Function

A B C f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Truth Table

K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1
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K-Map Construction
• Notice that any 2 

adjacent cells differ 
by exactly one bit in 
the input.

• either A is different, or 
B is different or C is 
different.

• Never more then 1 
variable is different!

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1
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How to use K-Map

K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

Rectangular collections of 
cells that all have the 
value 1 indicate it is 
possible to merge the 
corresponding terms in 
SOP expression.

The number of cells in the 
rectangle must be a 
power of 2!
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Possible Mergings
• There are 3 possible 

mergings of terms in 
this K-Map.

K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1



CSCI-2500 SPRING 2016, Boolean Logic

One of the merges
• The merge shown 

means “if C is 1 and B 
is 1, it doesn’t matter 
what the value of A 
is”

K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

CBCBACBA •=••+••
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All 3 reductions
K-Map

AB

C

00 01 11 10

0 0 0 1 0

1 0 1 1 1

CBACBACBACBAf ••+••+••+••=Original:

Reduced: BACACBf •+•+•=
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K-Map Concept
• A professional Logic Designer would 

need to use minimization techniques 
every day.

• We are just amateurs, so all we need to 
know is the general idea.

• that there are systematic procedures for 
minimizing SOP and POS form Boolean 
equations.



CSCI-2500 SPRING 2016, Boolean Logic

Combinational vs. Sequential
• Combinational: output depends 

completely on the value of the inputs.
• time doesn’t matter.

• Sequential: output also depends on the 
state a little while ago.

• can depend on the value of the output some 
time in the past.
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Memory
• Think about how you might design a 

combinational circuit that could be used 
as a single bit memory.

• Use your memory to recall that the 
output of a gate can change whenever 
the inputs change.
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Gate Timing

A
B

C

A

B

C

Δt Δt
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Feedback

• What happens when A changes from 1 to 
0?

A C
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S-R latch

S

R

Q

Q

A B A nor B
0 0 1

0 1 0

1 0 0

1 1 0
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S

R

Q

Q

Qt St Rt Qt+1
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0?

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0?

S-R latch Truth Table

If S and R = 1, then Q’s 
output is undefined
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S-R latch Timing S

R

Q

Q

Q

Q

S

R

1

0

1

0

1

0

1

0

Δt

Δt

2Δt

2Δt
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Clocked S-R Latch
• Inside a computer we want the output 

of gates to change only at specific 
times.

• We can add some circuitry to make sure 
that changes occur only when a clock
changes (when the clock changes from 0 
to 1).
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Clocked S-R Latch
S

R

Q

Q

Clock

• Q only changes when the Clock is a 1.
• If Clock is 0, neither S or R reach the NOR 

gates.
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What if S=R=1?
• The truth table shows ? when S=R=1.
• The value of Q is undetermined.

• The circuit is not stable.

• We can make sure that S=R !=1 now that 
we have a clock. 



CSCI-2500 SPRING 2016, Boolean Logic

Avoiding S=R=1:    D Flip-Flop

D

Q

Q

Clock
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D Flip-Flop D
Q

Q

Clock

• Now have only one input: D.

• If D is a 1 when the clock becomes 1, the 
circuit will remember the value 1 (Q=1).

• If D is a 0 when the clock becomes 1, the 
circuit will remember the value 0 (Q=0).



CSCI-2500 SPRING 2016, Boolean Logic

D Flip-Flop Timing

Q

D

Clock
1

0

1

0

1

0
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8 Bit Memory
• We can use 8 D Flip-Flops to create an 8 

bit memory.

• We have 8 inputs that we want to store, 
all are written at the same time.

• all 8 flip-flops use the same clock.
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8 Bit Memory D Flip-Flop
D

clock Q

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D Flip-Flop

D0

D1

D3

D4

D5

D6

D2

D7
clock

Q0

Q1

Q3

Q4

Q5

Q6

Q2

Q7
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Bits, Bytes & Words
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Why Don’t Computers Use Base 10?
• Base 10 Number Representation

• That’s why fingers are known as “digits”
• Natural representation for financial transactions

• Floating point number cannot exactly represent $1.20
• Even carries through in scientific notation

• 1.5213 X 104

• Implementing Electronically
• Hard to store

• ENIAC (First electronic computer) used 10 vacuum tubes / 
digit

• Hard to transmit
• Need high precision to encode 10 signal levels on single wire

• Messy to implement digital logic functions
• Addition, multiplication, etc.
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Binary Representations
• Base 2 Number Representation

• Represent 1521310 as 111011011011012

• Represent 1.2010 as 1.0011001100110011[0011]…2

• Represent 1.5213 X 104 as 1.11011011011012 X 213

• Electronic Implementation
• Easy to store with bistable elements
• Reliably transmitted on noisy and inaccurate wires 

• Straightforward implementation of arithmetic functions
0.0V
0.5V

2.8V
3.3V

0 1 0
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Byte-Oriented Memory Organization
• Programs Refer to Virtual Addresses

• Conceptually very large array of bytes
• Actually implemented with hierarchy of different memory 

types
• SRAM, DRAM, disk
• Only allocate for regions actually used by program

• In Unix and Windows NT, address space private to particular 
“process”

• Program being executed
• Program can clobber its own data, but not that of others

• Compiler + Run-Time System Control Allocation
• Where different program objects should be stored
• Multiple mechanisms: static, stack, and heap
• In any case, all allocation within single virtual address space
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Encoding Byte Values
• Byte = 8 bits

• Binary 000000002 to 111111112

• Decimal: 010 to 25510

• Hexadecimal 0016 to FF16

• Base 16 number representation
• Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
• Write FA1D37B16 in C as 0xFA1D37B

• Or   0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Machine Words
• Machine Has “Word Size”

• Nominal size of integer-valued data
• Including addresses

• Most current machines are 32 bits (4 bytes)
• Limits addresses to 4GB
• Becoming too small for memory-intensive 

applications
• High-end systems are 64 bits (8 bytes)

• Potentially address ≈ 1.8 X 1019 bytes
• Machines support multiple data formats

• Fractions or multiples of word size
• Always integral number of bytes
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Word-Oriented Memory Organization

• Addresses Specify 
Byte Locations

• Address of first 
byte in word

• Addresses of 
successive words 
differ by 4 (32-bit) 
or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

0000

0004

0008

0012

0000

0008
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Data Representations
• Sizes of C Objects (in Bytes)

• C Data TypeCompaq AlphaTypical 32-bit
Intel IA32

• int 4 4 4
• long int 8 4 4
• char 1 1 1
• short 2 2 2
• float 4 4 4
• double 8 8 8
• long double 8 8 10/12
• char * 8 4 4

• Or any other pointer
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Byte Ordering
• How should bytes within multi-byte word 

be ordered in memory?
• Conventions

• Sun’s, Mac’s are “Big Endian” machines
• Least significant byte has highest address

• Alphas, PC’s are “Little Endian” machines
• Least significant byte has lowest address
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Byte Ordering Example
• Big Endian

• Least significant byte has highest address
• Little Endian

• Least significant byte has lowest address
• Example

• Variable x has 4-byte representation 0x01234567
• Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Reading Byte-Reversed Listings
• Disassembly

• Text representation of binary machine code
• Generated by program that reads the machine code

• Example Fragment
Address Instruction Code Assembly Rendition
8048365: 5b                   pop    %ebx
8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

• Deciphering Numbers
• Value: 0x12ab

• Pad to 4 bytes: 0x000012ab
• Split into bytes: 00 00 12 ab

• Reverse: ab 12 00 00
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Examining Data Representations
• Code to Print Byte Representation of Data

• Casting pointer to unsigned char * creates byte 
array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{

int i;
for (i = 0; i < len; i++)
printf("0x%p\t0x%.2x\n",

start+i, start[i]);
printf("\n");

}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal
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show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux):
int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00
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Representing Integers
• int A = 15213;
• int B = -15213;
• long int C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3    B    6    D

6D
3B
00
00

Linux/Alpha A

3B
6D

00
00

Sun A

93
C4
FF
FF

Linux/Alpha B

C4
93

FF
FF

Sun B

Two’s complement representation
(Covered in future)

00
00
00
00

6D
3B
00
00

Alpha C

3B
6D

00
00

Sun C

6D
3B
00
00

Linux C
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Representing Pointers
• int B = -15213;
• int *P = &B;

Alpha Address
Hex: 1    F    F    F    F    F    C    A    0

Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000

01
00
00
00

A0
FC
FF
FF

Alpha P

Sun Address
Hex: E    F    F    F    F    B    2    C    
Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & machines assign different locations to objects

FB
2C

EF
FF

Sun P

FF
BF

D4
F8

Linux P

Linux Address
Hex: B    F    F    F    F    8    D    4    
Binary: 1011 1111 1111 1111 1111 1000 1101 0100
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Representing Floats
• Float F = 15213.0;

IEEE Single Precision Floating Point Representation
Hex: 4    6    6    D    B    4    0    0    
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines

00
B4
6D
46

Linux/Alpha F

B4
00

46
6D

Sun F

Can see some relation to integer representation, but not obvious

IEEE Single Precision Floating Point Representation
Hex: 4    6    6    D    B    4    0    0    
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

IEEE Single Precision Floating Point Representation
Hex: 4    6    6    D    B    4    0    0    
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01
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n char S[6] = 
"15213";

Representing Strings
• Strings in C

• Represented by array of characters
• Each character encoded in ASCII format

• Standard 7-bit encoding of character set
• Other encodings exist, but uncommon
• Character “0” has code 0x30

• Digit i has code 0x30+i
• String should be null-terminated

• Final character = 0
• Compatibility

• Byte ordering not an issue
• Data are single byte quantities

• Text files generally platform independent
• Except for different conventions of line termination 

character(s)!

Linux/Alpha S Sun S

32
31

31
35

33
00

32
31

31
35

33
00
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Machine-Level Code Representation
• Encode Program as Sequence of Instructions

• Each simple operation
• Arithmetic operation
• Read or write memory
• Conditional branch

• Instructions encoded as bytes
• Alpha’s, Sun’s, Mac’s use 4 byte instructions

• Reduced Instruction Set Computer (RISC)
• PC’s use variable length instructions

• Complex Instruction Set Computer (CISC)
• Different instruction types and encodings for different 

machines
• Most code not binary compatible

• Programs are Byte Sequences Too!
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Representing Instructions
• int sum(int x, 
int y)

• {
• return x+y;
• }

Different machines use totally different instructions and encodings

00
00
30
42

Alpha sum

01
80
FA
6B

E0
08

81
C3

Sun sum

90
02
00
09

n For this example, Alpha & Sun 
use two 4-byte instructions

n Use differing numbers of 
instructions in other cases

n PC uses 7 instructions with 
lengths 1, 2, and 3 bytes

n Same for NT and for Linux
n NT / Linux not fully binary 

compatible

E5
8B

55
89

PC sum

45
0C
03
45
08
89
EC
5D
C3
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Bit-Level Operations in C
• Operations &,  |,  ~,  ^ Available in C

• Apply to any “integral” data type
• long,  int,  short,  char

• View arguments as bit vectors
• Arguments applied bit-wise

• Examples (Char data type)
• ~0x41 -->  0xBE

~010000012 --> 101111102
• ~0x00 -->  0xFF

~000000002 --> 111111112
• 0x69 & 0x55  -->  0x41

011010012 & 010101012 --> 010000012
• 0x69 | 0x55  -->  0x7D

011010012 | 010101012 --> 011111012
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Contrast: Logic Operations in C
• Contrast to Logical Operators

• &&, ||, !
• View 0 as “False”
• Anything nonzero as “True”
• Always return 0 or 1
• Early termination

• Examples (char data type)
• !0x41  -->  0x00
• !0x00  -->  0x01
• !!0x41 -->  0x01

• 0x69 && 0x55  -->  0x01
• 0x69 || 0x55  -->  0x01
• p && *p (avoids null pointer 

access)
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Shift Operations
• Left Shift: x << y

• Shift bit-vector x left y positions
• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y

• Shift bit-vector x right y positions
• Throw away extra bits on right

• Logical shift
• Fill with 0’s on left

• Arithmetic shift
• Replicate most significant bit on 

right
• Useful with two’s complement 

integer representation

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Cool Stuff with Xor

void swap(int *x, int *y)
{

*x = *x ^ *y;    /* #1 */
*y = *x ^ *y;    /* #2 */
*x = *x ^ *y;    /* #3 */

}

• Bitwise Xor is form 
of addition

• With extra 
property that every 
value is its own 
additive inverse

A ^ A = 0

BABegin
BA^B1

(A^B)^B = AA^B2
A(A^B)^A = B3
ABEnd

*y*x



Two’s Complement
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Range of integers
• A mathematical integer ranges from  - ∞ to +∞
• Consequently,  a mathematical integer consists 

of an unbounded number of bits.
• No computer can store all the integers in this 

range (would require infinite storage).
• To use computer memory more efficiently, two 

broad categories of integer representation have 
been developed:  unsigned integers and signed 
integers.
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Unsigned & signed integer arithmetic

• An unsigned integer ranges from 0 to +∞.

• The maximum unsigned integer that a 
computer can store depends on the 
number of bits the computer allocates to 
store an unsigned integer.
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Range of unsigned integers

# of Bits 
---------

8
16
32

Range
------------------------
0    ..     255
0    ..     65,535
0    ..     4,294,967,296



CSCI-2500 SPRING 2016, Boolean Logic

Range of unsigned integers
• Let's add 19 and 23

1    1 1 1    carry
0 0 0 1 0 0 1 1     19
0 0 0 1 0 1 1 1 23
0 0 1 0 1 0 1 0     42
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Range of unsigned integers
• Given an 8-bit allocation, what happens when we add 

250 and 8

11111010    250
+ 0001000        8

0000010        2

• The 1 bit that carries out of the left end of the 
operation will be discarded.  The answer we compute 
will be 2, which is (250 + 8) modulo 256
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Range of unsigned integers
• The previous problem arises when you try to store a 

number that is not within the range defined by the 
allocation.  

• With an 8-bit allocation, the largest number that can be 
stored is 255; however, the result of the addition is 258.

• Overflow is the term used for the condition that results 
when there are insufficient bits to represent a number in 
binary.
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Signed 8-bit arithmetic

• So far we have concentrated on positive 
numbers.

• There is no negative sign inside the 
computer; therefore, we have to devise a 
scheme for representing negative numbers.

• We will consider One's complement and 
two's complement.

• For simplicity, we will use an 8-bit 
representation. 
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Signed 8-bit arithmetic
• One's complement format of a number

• Change the number to binary, ignoring the 
sign.

• Add 0s to the left of the binary number to 
make a total of 8 bits

• If the sign is positive, no more action is 
needed.

• If the sign is negative, complement every 
bit (i.e. change from 0 to 1 or from 1 to 0)
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Signed 8-bit arithmetic
• Write 25 in one's complement format

0 0 0 1 1 0 0 1        25 = (2^4 + 2^3 + 2^0)

• Write -25 in one's complement format
• Since the number is negative, complement 

each bit
1 1 1 0 0 1 1 0        -25
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Signed 8-bit arithmetic
• One's complement

• Negation is easy.
• Addition / subtraction is relatively easy…
• Range:    -(2n-1 – 1) to +(2n-1 – 1)
• Drawback: Two values for 0

+0     00000000
-0      11111111 
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One's Complement  to Decimal
• If the sign bit (the leftmost bit) is 0, convert 

from binary to decimal.

• If the sign bit is 1 (negative number)
• complement the number
• convert the number to decimal
• put a negative sign in front of the number.
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One's Complement  to Decimal
• Convert the following 1's complement 

representation to decimal:
• a) 11110001:

• Since the sign bit is 1, complement the      
number:   00001110

• Convert to decimal:  000011102 = 1410
• Put a negative sign in front:   -14

• b)  00011010
• Since the sign bit is 0, do not complement the 

number, just do the direct binary to decimal 
conversion.

• 2^4 + 2^3 + 2^1 = 26
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Signed Arithmetic in 2's complement

• Most computers today use 2's complement 
representation for negative numbers.

• The 2's complement of a negative number is 
obtained by adding 1 to the 1's complement.
For -13:

00001101     base integer
11110010     1's complement

+1
11110011     2's complement 
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• Write -25 in two's complement format.
• +25 = 2^4 + 2^3 + 2^0 = 00011001 
• Formats for -25 are:

• 1 1 1 0 0 1 1 0        one's complement
• 1 1 1 0 0 1 1 1        two's complement

Signed Arithmetic in 2's complement
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• To add two integers in two's complement, 
add two bits and propagate the carry to the 
next column.  If there is a final carry after 
the leftmost column addition, discard it.

Add -25 and 20:
1 1 1 0 0 1 1 1       (-25)
0 0 0 1 0 1 0 0 ( 20)
1 1 1 1 1 0 1 1

Signed Arithmetic in 2's complement
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• Since the negative of any number is its two's 
complement, the sum of a number and its two's 
complement is always 0

• The difference, a – b, is computed as a + 
twos_complement(b) (i.e., flip bits and add 1)

Signed Arithmetic in 2's complement
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• Add +12 and -12
+12 = 000011002

-12 = 111101002

0     000000002

Signed Arithmetic in 2's complement
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• Two's complement
• Negation is easy
• Addition / subtraction is easy
• One value for zero.
• Range:  -(2n-1) to +(2n-1 – 1)
• Conversion:

• If the sign bit is 0, convert the binary number to 
decimal. 

• If the sign bit is 1 subtract 1 from the binary 
number

• complement each bit
• convert the binary number to decimal
• put a minus sign in front

Summary: 2's complement



Constructing an ALU
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Arithmetic Logic Unit
• The device that performs the 

arithmetic operations and logic 
operations.

• arithmetic ops: addition, subtraction
• logic operations: AND, OR

• For MIPS we need a 32 bit ALU
• can add 32 bit numbers, etc.
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Starting Small
• We can start by designing a 1 bit ALU.
• Put a bunch of them together to make 

larger ALUs.
• building a larger unit from a 1 bit unit is 

simple for some operations, can be tricky 
for others.

• Bottom-Up approach:
• build small units of functionality and put 

them together to build larger units.



CSCI-2500 SPRING 2016, Boolean Logic

1 bit AND/OR machine

• We want to design a single box that 
can compute either AND or OR.

• We will use a control input to 
determine which operation is 
performed.

• Name the control “Op”.
• if Op==0 do an AND
• if Op==1 do an OR
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Truth Table For 1-bit AND/OR

Op A B Result

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

A
B
Op

Result

Op=0: Result is A•B

Op=1: Result is A+B
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Logic for 1-Bit AND/OR

• We could derive SOP or POS and build 
the corresponding logic.

• We could also just do this:
• Feed both A and B to an OR gate.
• Feed A and B to an AND gate.
• Use a 2-input MUX to pick which one will 

be used.
• Op is the selection input to the MUX.
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Logic Design for 1-Bit AND/OR

Mux Result

A

B

Op
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Addition A painful reminder of the test

• We need to build a 1 bit adder
• compute binary addition of 2 bits.

• We already know that the result is 2 
bits.
A B O0 O1
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A
+ B
O0 O1

This is addition, 
not logical OR!
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One Implementation

A
B O0

A
B

A
B

O1
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Binary addition and our adder

What we really want is something that can 
be used to implement the binary 
addition algorithm. 

• O0 is the carry
• O1 is the sum

01001
+   01101

10110

11 Carry



CSCI-2500 SPRING 2016, Boolean Logic

What about the second column?

• We are adding 3 bits
• new bit is the carry from the first column.
• The output is still 2 bits, a sum and a carry

01001
+   01101

10110

11 Carry
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Revised Truth Table for Addition

A B Carry
In

Carry
Out

Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
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Logic Design for new adder
• We can derive SOP expressions from 

the truth table.

• We can build a combinational circuit 
that implements the SOP expressions.

• We can put it in a box and give it a 
name.
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New Component: Adder

adder
A

B

Carry In

Carry Out

Sum



CSCI-2500 SPRING 2016, Boolean Logic

1 Bit ALU

• Combine the AND/OR with the adder.
• We must now use a 4-input MUX with 

2 selection inputs.

AND OR add
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b

0

2

Result

Operation

a

1

CarryIn

CarryOut
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Building a 32 bit ALU

• 64 inputs
• 3 different Operations (AND,OR,add).
• 32 bit output

A0 A1 … A31 B0 B1 … B31
……

Op

R0 R1 … R31

…

Result
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Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

Ripple Carry Adder

• Carry out from ALU0 is 
sent to carry in of ALU1

• How long will it take for 
the result to become 
available?
• the CarryOuts must 

propagate through all 
32 1-Bit ALUs. 
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New Operation: Subtraction
• Subtraction can be done with an adder:

A - B can be computed as A + -B

• To negate B we need to:
• invert the bits.
• add 1
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Negating B in the ALU
• We can negate B by in the ALU by:

• providing B to the adder.
• need a selection bit to do this.

• To add 1, just set the initial carry in to 
1!
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Revised 1 Bit ALU

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b
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Uses for our ALU
• addition, subtraction, OR and AND 

instructions can be implemented with 
our ALU.

• we still need to get the right values to the 
ALU and set control lines.

• We can also support the slt instruction.
• need to add a little more to the 1 bit ALU.
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Supporting slt

slt needs to compare 2 numbers.
• comparison requires a subtraction.

if A-B is negative, then A<B is true.
otherwise A<B is false.

True: output should be 0000000…001
False: output should be 0000000…000
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slt Strategy

• To compute slt A B: 
• subtract B from A (set binvert and 

the L.S. Carry In to 1.
• Result for all 1-bit ALUs except the LS 

should always be 0.
• Result for the LS 1-bit ALU should be 

the result bit from the MS 1-bit ALU!
LS: Least significant (rightmost)

MS: Most significant (leftmost)



CSCI-2500 SPRING 2016, Boolean Logic

New 1-bit ALU

0

3

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

C a r r y O u t

0

1

B i n v e r t

b 2

L e s s
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MSB ALU

0

3

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

0

1

B i n v e r t

b 2

L e s s

S e t

O v e r f l o w

d e t e c t i o n
O v e r f l o w

.
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New 32-bit ALU

Set
a31

0

ALU0 Result0

CarryIn

a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

• Less input is 0 for 
all but the LS.

• Result of addition in 
the MS ALU is fed 
back to the Less
input of the LS ALU
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Put it in a box and give it a name

ALU Result
Zero

Overflow

a

b

ALU operation

CarryOut
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Speed is important.
• Using a ripple carry adder the time it 

takes to do an addition is too long.
• each 1-bit ALU has something like 2 levels

of gates.
• The input to the ith ALU includes an output 

from the i-1th ALU.
• For 32 bits we have something like 64 gate 

delays before the addition is complete.
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Strategies for speeding things up.
• We could derive the truth table for 

each of the 32 result bits as a function 
of 64 inputs.

• We know we can build SOP expressions 
for each and implement using 2 levels of 
gates.

• This might be a good test question!
• don’t worry, you would need so much paper I 

couldn’t carry the tests to class…
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A more realistic approach
• The problem is the ripple

• The last carry-in is takes a long time to 
compute.

• We can try to compute the carry-in bits 
as fast as possible

• this is called carry lookahead
• It turns out we can easily compute the 

carry-in bits much faster (but not in 
constant time).
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Carry In Analysis
• CarryIni is an input to 

the ith 1 bit adder.

• CarryOuti-1 is 
connected to CarryIni

• We know about how to 
compute the 
CarryOuts

A B Cary
In

Cary
Out

Sum

0 0 0 0 0

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
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Computing Carry Bits
• CarryIn0 is an input to the adder.

• we don’t compute this – it’s an input.
• CarryIn1 depends on A0, B0 and CarryIn0:

CarryIn1 = (B0• CarryIn0) + (A0 • CarryIn0)+(A0 • B0)

SOP: Requires 2 levels of gates
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CarryIn2

CarryIn2 = (B1• CarryIn1) + (A1 • CarryIn1)+(A1 • B1)

We can substitute for CarryIn1 and get this mess:

CarryIn2 = (B1• B0• CarryIn0) + (B1• A0 • 
CarryIn0)+(B1• A0 • B0) + (A1 • B0• CarryIn0) + (A1 
• A0 • CarryIn0)+(A1 • A0 • B0)+(A1 • B1)

The size of these expressions will get too big 
(that’s the whole problem!). 
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Another way to describe CarryIn

Ci+1 = (Bi• Ci) + (Ai • Ci)+(Ai • Bi)
= (Ai • Bi) + (Ai + Bi) •Ci

Ai • Bi : Call this Generate (Gi)
Ai + Bi : Call this Propagate (Pi)

Ci+1 = Gi + Pi • Ci
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Generate and Propagate

• When Ai and Bi are both 1, Gi becomes a 1.
• a CarryOut is generated.

• If Pi is a 1, any Carry in is propagated to Carry 
Out.

Ci+1 = Gi + Pi • Ci

Gi =Ai • Bi

Pi =Ai + Bi
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Using Gi and Pi

C1 = G0+P0•C0

C2 = G1+P1•C1

= G1+ P1• (G0+P0•C0)
= G1+ P1• G0 + P1• P0•C0

C3 = G2 + P2•G1 + P2•P1•G0 + P2•P1•P0•C0
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Implementation
• Expression still get too big to handle 

(for 32 bits).
• We can minimize the time needed to 

compute all the CarryIn bits for a 4 bit 
adder.

• Connect a bunch of 4 bit adders 
together and treat CarryIns to these 
adders in the same manner.
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CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0 
b0 
a1 
b1 
a2 
b2 
a3 
b3

a4 
b4 
a5 
b5 
a6 
b6 
a7 
b7

a8 
b8 
a9 
b9 

a10 
b10 
a11 
b11

a12 
b12 
a13 
b13 
a14 
b14 
a15 
b15

Carry-lookahead unit


