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“TABLE 16

American Stanaard Code for information interchange (ASCIl)

B,8,B,

B.B,B,B, 00G 001 010 011 100 101 110 111

©0p000 KNULL DLE SP 0 @ P p

| 0001 SOH DC1 ! 1 A Q a a

+ 0010 STX DC:z - p) B R b r

30011 ETX DC3 # 3 C S c s

40100 EOT DC4 s 4 D T d t

50101 ENG NAK % s E U e u

€ 0110 ACK SYN & 6 F Y f v

10111 BEL ETB ' 7 G w g w

¥ 1000 BS CAN ( 8 H X h x

21001 HT EM ) 9 I Y i y

{91010 LF SUB . : ] z j z

11011 \'%1 ESC + ; K [ K {

1100 FF Fs , < L N 1 :

;21101 CR GS - = M ] m |

#1110 SC RS . > N : n ~

s1111 3481 S Us / ? o} c DEL
TABLE 2-3
Basic identities of Booieen Algebrs
L.X+0=X 2.X1=X
3X+1=1 4. X-0=0
5. X+ X=X 6. X - X=X
7. X+ X=1 g X-X=0°
9. X = X
10 X+Y=Y+ X 11. XY = YX Commurtative
R.X+(Y+2)=(X+Y+Z 13 X(¥YZ)=(XV)Z Associative
4. X(Y + Z) = XY + XZ 15. X + YZ = (X_+ Y)(X + Z) Distributive
6. X+Y=X-Y 172X Y=X+7Y DeMorgan
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DIGITAL
CIRCUITS

3.1 BINARY LOGIC AND GATES

Binary Logic

28

Digital circuits are hardware components that manipulate binary information. The
circuits are constructed with electronics parts such as transistors, diodes, and re-
sistors. Each circuit is referred to as a gate. The designer of a digital system does
not have to be concerned with the internal construction of the individual gates but
only with their external logical properties. Each gate performs a specific logical
operation, and the output from one gate is applied to the inputs of other gates, in
sequence, 1o form the required digital circuit.

in order to describe the operational properties of digital circuits, it is necessary
to introduce a mathematical notation that specifies the operation of each gate. This
mathematical system is a binary logic system known as Boolean algebra. The name
of the algebra is in honor of the English mathematician George Boole, who in 1854
published a book introducing the mathematical theory of logic. Today Boolean
algebra is used to describe the interconnectiion of digital gates and to transform
circuit diagrams to algebraic expressions. We will first introduce the concept of
binary logic and show its relationship to digital gates and binary signals. We will
then present the properties of Boolean aigebra together with other design methods
for dealing with various aspects of digital circuits and systems.

-

Binarv logic deals with variables that take on two discrete values and with operations
that assume logical meaning. The two values the variables take may be called by
difierent names. but for our purpose it is convenient to think in terms of binary
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values and essign i and 0 to each variable. The variables are designated by letters
of the alphabet such as 4, B. C. X, Y, Z. There are three logical operations
associated with the binary variables called AND. OK. and NOT.

1. AND. This operation is represented by a dot or bv the absence of an operator.
For example. X - Y = Zor XY = Zis read “X AND Yis equal to Z.”” The
logical operation AND 1s interpreted to mean that Z = 11if and only if X' =
1and ¥ = 1: otherwise Z = 0. (Remember that X, Y. and Z are binary
variables and can be equal to 1 or 0 and nothing else.) )

2. OR. This operation is represented by a plus svmbol. For example X + Y =
7 is read "X OR Y is equal to Z”, meaning that Z = 1if X’ = lorY =1
orifboth¥ = 1landY = 1. Onlyif X = Oand Y 0.is Z = 0.

3. NOT. This operation is represented by a bar over the variable. For example,
% = 7 is read X NOT is equal to Z", meaning that Z is what X is not. In
other words. if X = 1, then Z = 0; butif X = 0, then Z = 1. The NOT
operation is also referred to as the complement operation. since 1t changes a
1to0and a 0to 1.

Binary logic resembles binary arithmetic, and the operations AND and OR have
similarities to multiplication and addition, respectively. In fact, the symbols used
for AND and OR are the same as those used for multiplication and addition.
However. binary logic should not be confused with binary arithmetic. One should
realize that an arithmetic variable designates a number that may consist of many
digits. A logic variable is always either a 1 or a 0. The possible binary values for
the logical OR operation are as folows:

Il

0+0=0

0+1=1

1+0=1

1+1=1
These resemble binary addition except for the last operation. In binary logic we
have 1 + i = 1 (read “one OR one is equal to one’’), but in binary arithmetic

we have 1 + 1 = 10 (read “one plus one is equal to two”). To avoid ambiguity,
the symbol V is sometimes used for the OR operation instead of the + symbol.
But as long as arithmetic and logic operations are not mixed, each can use the +
symbol with its own independent meaning.

The binary values for the AND operation are

0-0=20
0-1=20
1:0=0
1-1=1

This is identical to binary multiplication provided we use only a single bit. Logical
AND is sometimes referred to as logical multiplication and logical OR as logical

additior:.
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Logic Gates

TABLE. 2-1
“ruth Tables for the Three Logical Operaiions

AND OF NOT
X v XY X v X+Y y |3
0 0 0 0 0 0 o | 1
0 1 0 0 1 ] I 4 0
10 0 1 0 1 |
1 1 1 1 1 1 i

For each combination of the values of binarv variables such as X and Y. there
is a vaiue of Z specified by the definition of the logical operation. These definitions
mav be listed in a compact form in a fruth table. A truth table is a table of
combinations of the binary variables showing the relationship between the values
that the variables take and the result of the operation. The truth tables for the
operations AND, OR, and NOT are shown in Table 2-1. The tables list all possible
values for the variables and the results of the operation. These tables clearly
demonstrate the definition of the three operations.

Logic gates are electronic circuits which operate on one or more input signals to
produce an output signal. Electrical signals such as voltages or currents exist throughout
a digital system in either of two recognizable values. Voltage operated circuits
respond to two separate voltage levels which represent a binary variable equal to
Jogic-1 or iogic-0. For example, a particular digital system may define logic-0 as a
signal equal to 0 volts, and logic-1 as a signal equal to 4 volts. In practice. each
voltage level has an acceptable range as shown in Figure 2-1. The input terminals
of digital circuits accept binary signals within the allowable range and respond at
the output terminals with binary signals that fall within the specified range. The
intermediate region between the allowed regions is crossed only during state tran-
sition. Anv desired information for computing or control can be operated upon by
passing binary signals through various combinations of logic gates with each signal
representing a particular binary variable.

The graphic symbols used to designate the three types of gates are shown in

Volts

Range for
logic-1

Transition occurs
between these limits

" Ranye for
logic-0

FIGURE 2-1
Example of Binary Signals
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X o—— X s, ™~ = -
v o 7= XY ‘;_—/>—-4:X+Y X X

NOT gate or

AND gate OR gate
inverter

{a} Graphic symbois

(OH)X+Y|O|‘| 1 ‘IL

(NOT) X j i 0 0

{b) Timing diagram

FIGURE 2-2
Digital Logic Gates

Figure 2-2(a). The gates are blocks of hardware that produce the equivalent of
MgKJandmgoOompMS@nMsﬁhmuﬂogcqummwnmamsmﬁﬁmLThempm
signals X and Y may exist in the AND and OR gates in one of four possible states:
00, 01, 10, or 11. These input signals are shown in Figure 2-2(b) together with the
corresponding output signal for each gate. The timing diagrams illustrate the re-
sponse of each gate 10 the four possible input signal combinations. The horizontal
axis of the timing diagram represents time and the vertical axis shows the signal
as it changes between the two possible voltage levels. The low level represents
logic-0 and the high level represents logic-1. The AND gate responds with a logic-
1 output signal when both input signals are logic-1. The OR gate responds with
logic-1 output signal if any input signal is logic-1. The NOT gate is commonly
referred to as an inverter. The reason for this name is apparent from the signal
response in the timing diagram where it is shown that the output signal inverts the
logic sense of the input signal.

AND and OR gates may have more than two inputs. An AND gate with three
inputs and an OR gate with four inputs are shown in Figure 2-3. The three-input

] F=A+B+C+D

OOmN

A e TN
—_ -
g IF = ABC
{a} Three-input AND gate {b) Four-input OR gate

-

FIGURE 2-2
Gates with Multiple Inputs
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I Circuits

AND gate responds with & jogic-1 output if all three inputs are logic-1. The output

produces a logic-0 if any input is logic-0. The four-input OR gate responds with a
logic-1 if any input is logic-1: its output becomes a logic-0 only when all inputs are

logic-C.

2-2 BOOLEAN ALGEBRA

TABLE 2-2

Truth Table for the _

Function F = X + YX

X Y 2z F
0 0 0 0
0 0 1 i
0o 1 0 (i
0 1 1 4
1 0 0
1 0 1 :
11 G :
11 i :

Boolean algebra is an algebra that deals with binary variables and logic operations.
The variables are designated by letters of the alphabet, and the three basic logic
operations are AND, OR, and complement. A Boolean function consists of an
algebraic expression formed with binary variables. the constants 0 and 1, the logic
operation symbols, parentheses, and an equal sign. For a given value of the binary
variables, the Boolean function can be equal to either 1 or 0. Consider as an example

the following Boolean function:
F=X+YZ

The function F is equal to 1 if X is equal to 1 or if both Y and Z are equal to 1
Otherwise F is equal to 0. The complement operation dictates that when Y =
then ¥ = 0. Therefore, we cansay that F = 1if X = lorif Y = 0and Z =

A Boolean function expresses the logical relationship between binary variables. It
is evaluated by determining the binary value of the expression for all possible values
of the variables.

A Boolean function can be represented in a truth table. A truth table is a list
of combinations of 1’s and O’s assigned to the binary variables and a column that
shows the value of the function for each binary combination. The number of rows
in the truth table is 27, where n is the number of variables in the function. The
binary combinations for the truth table are obtained from the binary numbers by
counting from 0 through 2" — 1. Table 2-2 shows the truth table for the function
listed above. There are eight possible binary combinations for assigning bits to the
three variables X, Y, and Z. The column labeled F contains either 0 or 1 for each
of these combinations. The table shows that the function is equal to 1 when X =
1 or when YZ = 01. Otherwise it is equal to 0.

A Boolean function can be transformed from an algebraic expression into a
circuit diagram composed of logic gates. The logic circuit diagram for F is shown
in Figure 2-4. There is an inverter for input Y to generate the complement Y.
There is an AND gate for the term YZ and an OR gate that combines the two
terms. In logic circuit diagrams, the variables of the function are taken as the inputs
of the circuit and the binary variable F is taken as the output of the circuit.

There is only one way that a Boolean function can be represented in a truth
table. However, when the function is in algebraic form, it can be expressed in a

Z

FIGURE 2-4
Logic Circuit Diagram for F = X + YZ
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variety of wavs. The particular expression used to designate the function will alsc
dictate the interconnection of gates in the Jogic circuit diagram. By manipulating
a Booiean expression according to Boolean algebra rules. it is sometimes possible
to obtain a simpier expression for the same function and thus reduce the number

of gates in the circuit. To see how this is done. it is necessary first 1o study the
basic rules of the algebra.

Basic Identities of Boolean Algebrz

Table 2-3 lists the most basic identities of Boolean algebra. The notation is sim-

plified by omitting the symbol - for the AND whenever it does not lead to confusion.

The first nine identities show the relationship between a single variable X. its

complement X . and the binary constants 0 and 1. The next five identities. 10 through ¥ g

14, are similar to ordinary algebra. The last three, 15 through 17, do not apply in i

ordinary algebra but are very useful in manipulating Boolean expressions. :
The basic rules listed in Table 2-3 have been arranged in two columns. The two :

parts demonstrate the property of duality of Boolean algebra. The dual of an 15§

i
:
:

algebraic expression is obtained by interchanging OR and AND operations and 19
replacing 1’s by 0's and 0’s by 1’s. An equation in one column of the table can be L
E{f obtained from the corresponding equation in the other column by taking the dual f
of the expressions on both sides’of the equal sign. For example, relation 2 is the

dual of relation 1 because the OR has been replaced by an AND and the 0 by 1.
: The nine identities involving a single variable can be easily verified by substituting
i both possible values for X. For example, to show that X+0=XletX =0to
: obtain 0 + 0 = 0, and then let X = 1toobtain1 + 0 = 1. Both equations are

true according to the definition of the OR Jogic operation. Any expression can be
# substituted for the variable X in all the Boolean equations listed in the table. Thus.
by identity 3 and with X = AB + C we obtain

AB+ C+1=1

Note that equation 9 states that double complementation restores the variable to
its original value. Thus if X = 0 then X=1and X = 0= X,
The commutative laws state that the order in which the variables are written

will not affect the result when using the OR and AND operations. The associative s
Jaws state that the result of forming an operation among three variables is inde- f:_
TABLE 2-% S =
Basic Identities of Eoolean Algebrza *r-

1. X+ 0= 2% 2.X-1=X

3.X+1 =" 4. X-0=0

5. X + X =24 6. X X=X

X+ X = 8 X-X=0

9. X = X

0. X+ Y=Y+ X 11. XY = Y& Commutative

X+ (Y+2D)=X+V+Z 13. X(YZ) = (XY)Z . Associative :
4. X(Y + 2y = XY + XZ 15. X+ YZ = (X + Y)WX + Z) Distributive -
6. X+Y=X"Y 17. - Y=X=+Y DeMorgan
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pendent of the order that is taken and therefore. the parentheses can be removec

altogether.

il

Y+ (Y +Zy=X+YVV+2Z=X+Y+ Z
X(YZy = (XY)Z = XYZ
These two laws and the first distributive law are weil known from ordinary algebra

so they should not impose any difficulty. The second distributive law given by
identity 15 is the dual of the ordinary distributive law and is very useful in manip-

ulating Boolean functions.
X+YZ=WX+Y)(X~+2)
This equation can be used for other combination of variables. Consider the expres-
sion (A4 + B) (A + CD). Letting X = A, Y = B, and Z = CD, and applying
the second distributive law we obtain
(A + B)y(A+ CD) =A + BCD
The last two identities in Table 2-3 are referred to as DeMorgan’s theorem.

(X+Y)=XY and (X-V)=X+7Y

This is a verv important theorem and is used to obtain the complement of an
expression. DeMorgan’s theorem can be verified by means of truth tables that
assign all the possible binary values to X and Y. Table 2-4 shows two truth tables
that verify the first part of DeMorgan’s theorem. In A. we evaluate (X + Y) for
all possible values of X and Y. This is done by first evaluating X + Y and then
taking its complement. In B, we evaluate X and Y and then AND them together.
The result is the same for the four binary combinations of X and Y which verifies
the identity of the equation.

Note the order in which the operations are performed when evaluating an expres-
sion. The complement over a single variable is evaluated, then the AND operation.
and then the OR operation, just as we do in ordinary algebra with multiplication
and addition. A complement over an expression such as (X + Y) is considered as
specifving NOT ( X + Y) so the value within the parentheses is evaluated first
and then the complement of the result is taken. It is customary to exclude the
parentheses when complementing an expression since a bar i1s drawn over the entire
expression. Thus (X + V) is expressed as X' + Y when designating the complement

of (X + V).

TABLE 2-¢4
Truth Tables to Verify DeMorgan's Theorem

B X Y X+Y (X+Y) B X Y X

~<!
>
<

1 o o 1

0 10 0
0 i 060

f)
a0

[ e S
DD D e
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DeMorgan’s theorem can be extended to three or more variables. The general
DeMorgan’s theorem can be expressed as follows: '

X1+X2+X3+...+X,::7Y]EX3...X,,

XleXj,...Xn:X']+)?:+X;+._, + X,
The logic operation changes from OR t0 AND or from AND to OR. In addition,
the complement is removed from the entire expression and placed instead over
each variable. For example.
Y¥7 =X+ Y+ Z and A + B+ C+ D =ABCD.

Algebraic Manipulation
Boolean algebra is a useful tool for simplifying digital circuits. Consider for example
the following Boolean function:

F=XYZ + XYZ + XZ

The implementation of this function with logic gates is shown in Figure 2-5(a).
Input variables X and Z are complemented with inverters to obtain X and Z. The
three terms in the expression are implemented with three AND gates. The OR
gate forms the logical sum of the three terms. Now consider the possible simpli-
fication of the function by applying some of the identities listed in Table 2-3.

F=XYZ+XYZ + XZ

= XY(Z + Z) + XZ by identity 14
=XY- -1+ XZ by identity 7
= XY + XZ by identity 2

x e

: %DZQ’_F
-

(a) F= XYZ + XYZ + XZ

Ny

oy z»“.‘.mvm-::f:—wr@wnmwmum‘%;vrmwmﬁWijﬁwﬁme G eyttt Y

X L
y __/’_——_i._d}_
F
.

b) F= XY +XZ

FIGURE 2-5
implementation of Boolean Function with Gates
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TABLE 2-£
Truth Table for

Boolean Function
R

X Y z F
0o 0 ¢ 0
¢ 0 1 0
0 1 ¢ 1
0o 1 1 1
1 0 4] 0
i 0 1 1
11 0 0
1 P i

The function i< reduced to only two terms anc can be implemented with gates as
shown in Figure 2-5(b). It is obvious that the circuit in (b) is simpler than the one
in (a): vet both implement the same function. It s possible to use a truth table to
verify that the two expressions are equivalent. as shown in Table 2-5. The function
as expressed in Figure 2-5(a) is equal to 1 when XYZ = 011, or when XYZ =
010. or when XZ = 11. This produces four 1's for F in the table. The function as.
expressed in Figure 2-5(b) is equal to 1 when XY = 01, or when XZ = 11. This
produces the four 1’s in the table. Since both expressions produce the same truth
table, they are said to be equivalent. Therefore. the two circuits have the same
output for all possible input binary combinations of the three variables. Each
implements the same function but the one with fewer gates is preferable because
it requires fewer components.

When a Boolean expression is implemented with logic gates, each term requires
a gate and each variable within the term designates an input to the gate. We define
a literal as a single variable within a term that may or may not be complemented.
The function of Figure 2-5(a) has three terms and eight literals; the one in Figure
2-5(b) has two terms and four literals. By reducing the number of terms, the number
of literals. or both, in a Boolean expression. it is sometimes possible to obtain a
simpler circuit. The manipulation of Boolean algebra consists primarily of reducing
an expression for the purpose of obtaining a simpler circuit. Unfortunately, there
are no specific rules that guarantee a good result. The only method available is a
cut-and-try procedure employing the basic relations and other manipulations that
become familiar with use. The following examples illustrate a few of the possibil-
ities.

a X+ XYy =X1+Y)y=2X

b. XY + XY = X(Y +Y) = X

X+ XY =X+X)X+Y)=X+Y
Note that the intermediate step X = X-1 has been omitted when X is factored out
in the first equation. The relationship 1 + Y =1 is useful for eliminating redundant
terms. as is done with the term XY in the first equation. The relation Y + Y =
1 is useful for combining two terms, as is done in the second equation. The two
terms 1o be combined must contain the same variable, but the variable must be
complemented in one term and not complemented in the other. The third equation
is simplified by means of the second distribution law (identity 15 in Table 2-3).

The following are three more examples of Boolean expression simplification.

G XX +Y)=X+XY=XQ+7Y)=2X

e‘,(X+Y)(X+?)=X+Y?=X

L.XX+Y) =XX + XY =XY
Note that the intermediate steps XX = X = X - 1 has been omitted during the
manipuiation of equation d. The expression in ¢ is simplified by means of the
second distributive law. Here again we omit the intermediate step YY = 0 and

¥ +0=Xx .
The iast three equations are the dual of the first three equations. Remember
that the dual of an expression is obtained by changing AND to OR and OR to

AND throughout (and 1’s to 0's and O’s to 1's if they appear in the expression).
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The duality principle of Booiean algebra states that & Boolean equation remains
valid if we take the dual of the expressions on both sides of the equal sign. There-
fore, equations ¢. €. and f can be verified by taking the dual of equations a. k.

and c, respectively.
The consensus theorem, shown below. is sometimes useful when simphfying

Boolean expressions.
XY + XZ + YZ = XY + XZ

It shows that the third term YZ is redundant and can be eliminated. Note that Y
and Z are also associated with X and X in the first two terms. The proof of the
equation is obtained by first ANDing YZ with (X + X) = L.

XY + XZ + YZ = XY + X7 + YZ(X + X)
XY + XZ + XYZ + XYZ
XY + XYZ + XZ + XYZ
XY(l + 2) = XZ(1 + V)
XY + XZ

i

il

i

i

The dual of the consensus theorem is
(X + Y)(X+Z)(Y+Z)= (X + VX + 2)

The following example shows how the consensus theorem can be applied when
manipulating a Boolean expression.

(A+B)(74+C)=AZ+AC+ZB+BC
= AC + AB + BC
= AC + AB
Note that AA = 0 and 0 + AC = AC. The redundant term here is BC.

Complement of a Function

Example 2-1

The complement of a function, F, is obtained from an interchange of 1’s to 0’s and
0's to 1’s in the values of F in the truth table. The complement of a function can
be derived algebraically by applying DeMorgan’s theorem. Remember that the
generalized form of this theorem states that the complement of an expression is
obtained by interchanging AND and OR operations and complementing each var-

1able.

Find the complement of the following two functions: F, = XYZ + XYZ and F,
= X(YZ + YZ).

Applying DeMorgan’s theorem as many times as necessary the complements
are obtained as follows:

F, = XYZ + XYZ = (XYZ) - (XYZ)
=(X+?+Z)(X+Y+2)
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Fo=X(YZ+YZy=2%~(YZ +YZ)

X+ (YZ YZ
X+ (Y+2)(Y +Z B

il
Nt

il

A simpler method for deriving the complement of a function 1s to take the dual
of the function and complement each literal. This method follows from the gen-
eralized DeMorgan’s theorem. Remember that the dual of an expression is obtained
by interchanging AND and OR operations and 1's and 0’s.

Example 2-2

Find the complement of the functions in Example 2-1 by taking their dual and
compiementing each literal

F, = XYZ + XYZ
The dual of F, X+Y+2(X+Y+2)
Complement each literal (X + ¥ + Z) (X + Y + Z) = F,

F.o= X(YZ + YZ)
The dual of F, X+ T+ + 2
Complement each literal X + (Y + 2) (Y +2) = F

2-3 STANDARD FORMS

A Boolean function can be written in a variety of ways when expressed algebraically.
There are. however, a few algebraic expressions that are considered to be in
standard form. The standard forms facilitate the simplification procedures of Boo-
Jean expressions and frequently result in a more desirable gating circuits.

The standard forms contain terms referred to as product terms and sum terms.
An example of a product term Is XYZ. This is a logical product consisting of an
AND operation among several variables. An example of a sum termis X + Y +
7. This is a logical sum consisting of an OR operation among the variables. It must
be realized that the words product and sum do not imply arithmetic operations
when dealing with Boolean algebra. Instead they specify logical operations equiv-
alent to the Boolean operations of AND and OR. respectively.

Minterms and Maxterms

It has been shown that a truth table defines a Boolean function. An algebraic
expression representing the function is derived from the table by finding the logical
sum of all product terms for which the function assumes the binary value of 1. A
product term in which all the variables appear exactly once either complemented
or uncomplemented is called a minterm. Its characteristic property is that it shows

iy
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TABLE 2-€
Minterms and Maxterms for Three Variables

Minterms Maxterms

Product
Term Symbol Sum Term Symbotl

A
e
[N}

0 0 0 XYZ Mg X+Y+Z M,
0o 0 1 XYZ m, X+Y+ 2 M,
0 1 0 XYz M. X+Y+2Z M.
0 1 1 XYz ", X+Y+2Z M.
1 0 0 XYZ m, Y+Y+2Z M,
10 1 XYZ m. X+ Y+ Z M.
11 0 XYZ me X+Y+2Z M,
T1 g XYz m- YX+Y+Z M.

exactly one combination of the binary variables in a truth table. There are 2" °
distinet minterms for n variables. The four minterms for the two variables X and
Y are XY. XY, XY, and XY. The cight minterms for the three variables X, Y,
and Z are listed in Table 2-6. The binary numbers from 000 to 111 are listed under
the variables. Each minterm is obtained from the product term of exactly three
variabies with each variable being complemented if the corresponding bit of the
binary number is 0 and uncomplemented if it is 1. A symbol for each minterm is
also shown in the table and is of the form m;, where the subscript j denotes the
decimal equivalent of the binary number of the mintern. The list of minterms for
any given n variables can be formed in a similar manner from a list of the binary
numbers from 0 through 2" — 1.

A sum term that contains all the variables in complemented or uncomplemented
form is called a maxterm. Again, it is possible to formulate 2" maxterms with »
variables. The eight maxterms for three variables are listed in Table 2-6. Each
maxterm is obtained from the logical sum of the three variables with each variable
being complemented if the corresponding bit is 1 and uncomplemented if 0. The
symbol for a maxterm is M, where j denotes the binary number of the maxterm.
Note that a minterm and maxterm with the same subscript number are the com-
plements of each other, that is M; = m;. For example, for j = 3, we have

A Boolean function can be expressed algebraically from a given truth table by
forming the logical sum of all the minterms which produce a 1 in the function.
Consider the Boolean function F in Table 2-7(a). The function is equal to 1 for
each of the following binary combinations of the variables X, Y and Z: 000, 010,
101. and 111. These combinations correspond to minterms 0. 2, 5, and 7. The
function F can be expressed algebraically as the logical sum of these four minterms.

F=XYZ + XYZ + XYZ + XYZ = mg + m, + mg + n,

This can be further abbreviated by listing only the decimal subscripts of the min-
terms.

F(X,Y.Z)y = 2m(U,
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TABLE 2-7 .

Eoolean Functions of Three Variables

(@ X Y I F F by X Y zZ £
N S 1 0 G 0 0 ]
0 G 1 0 1 G U 1 1
0 1 0 10 0 1 0 ]
0 1 1 0 1 0 i i 0
1 0 0 0 1 1 0 0 ]
1 o1 1 0 i 0 1 1
10 0 1 110 0
1 1 ] 1 0 ] 1 1 0

The symbol T stands for the logical sum (Boolean OR) of the minterms. The
numbers following it are the minterms of the function. The letters in parentheses
following F form a list of the variables in the order taken when the minterms are

converted to product terms.
Now consider the complement of a Boolean function. The binary values of Fin

Table 2-7(a) are obtained by changing 1’s 10 (’s and 0’s to 1’s in the values of F.
Taking the logical sum of the minterms of F we obtain

F=XVZ + XYZ +XYZ + XYZ = m, + ms + my + m,
or in abbreviated form
FX,Y,Z)=ZIm(l,3.4.6)

Note that the minterm numbers for F are the ones missing from the list of the
minterms of F. We now take the complement of F to obtain F.

m]+m3+m4+m6=m]-m3'md-m6

F

i

it

M, Ms- M, M (Since m; = M))
N+ Y+ DX +TY+2D))F+Y+ DX +Y+ 2)

il

This shows the procedure for expressing a Boolean function in product of maxterms.
The abbreviated form for the product of maxterms form is

F(X. Y, Z)=TIM(1.3.4.6)

The svmbol Ii denotes the logical product (Boolean AND) of the maxterms listed
in parentheses. Note that the decimal numbers included in the product of maxterms
will alwavs be the same as the minterm list of the complemented function (1. 3.
4, 6 in the above example). Maxterms are seldom used when dealing with Boolean
functions as we can always replace them with the minterm list of F. The following

is a summary of the most important properties of minterms:

1. There are 2" minterms for n Boolean variabies. They can be evaluated from

the binarv numbers from 0 to 27 ~ 1. .
. Anv Booiean function can be expressed as a logical sum of minterms.

[
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The complement of a function contains those minterms not included in the

Ly

original function.
£ A function that included all the 2" minterms 1s equal to logic-1.

A function that is not in sum of minterms can be converted to the sum of minterms
form by means of a truth table. since the truth table always specifies the minterms
of the function. Consider for example the Boolean function

E=Y + XZ
The expression is not in sum of minterms because each term does not contain all

three variables X. Y, and Z. The truth table for this function is listed in Table
2-7(b). From the truth table we obtain the minterms of the function.

E(X,Y,Z)=32m(0.1,2.4,5)
The minterms for the complement of E are
E(X,Y,Z)=2m(3,6.7)

Note that the total number of minterms in £ and E is equal to eight since the
function has three variables and three variables can produce a total of eight min-
terms. With four variables, there will be a total of 16 minterms, and for two
variables, there will be four minterms. An example of a function that includes all

the minterms is
G(X,Y)=22m(0,1,2, 3H =1

Since G is a function of two variables and contains all four minterms, it will always
equal to logic-1.

The sum of minterms form is a standard algebraic expression that is obtained
directly from a truth table. The expression so obtained contains the maximum
number of product terms and the maximum number of literals in each term. This
is because, by definition, each minterm must include all the variables of the function
complemented or uncomplemented. Once the sum of minterms is obtained from
the truth table, the next step is to try to simplify the expression to see if it is possible
to reduce the number of product terms and the number of literals in the terms.
The result is a simplified expression in sum of products. The sum of products is
an aiternate standard form of expression that contains product terms with one, two
or any number of literals. Anvexample of a Boolean function expressed in sum of

products 1s
F=Y+ XYZ + XY

The expression has three proguct terms. The first term has one literal, the second
has three literals, and the third has two literals.

The logic diagram of a sum of products expression consists of a group of AND
gates followed by a single OR gate. This configuration pattern is shown in Figure




Chepier = Digital Circuits

i

= = —
Z [
O

Y Y

FIGURE 2-6
Sum of Products Implementatior

2-6. Each product term requires an AND gate except for a term with a single
literal. The logical sum is formed with an OR gate that receives its inputs from the
outputs of the AND gates or the single variable. It is assumed that the input
variables are directly available in their complement, so inverters are not included
in the diagram. The AND gates followed by the OR gate forms a circuit config-

uration referred to as a rwo-level implementation.
If an expression is not in sum of products form, it can be converted to the

- standard form by means of the distributive Jaws. Consider the expression
F=AB + C(D + E)

This is not in sum of products form because the term (D + E) is part of a product
but is not a single variable. The expression can be converted to a sum of products

by removing the parentheses.
F=AB + CD + E) = AB + CD + CE

The implementation of this function is shown in Figure 2-7. The function is im-
plemented in a nonstandard form in (a). This requires two AND gates and two
OR gates. There are three levels of gating in this circuit. The expression is imple-
mented in sum of products form in (b). This circuit requires three AND gates and
an OR gate and uses two levels of gating. In general, a two-level implementation
is preferred because it produces the least amount of delay time through the gates
when the signal propagates from the inputs to the output.

=

[ ;
& - ; ¢ !

(— b— ST
. c—y ]
£ l___/ from——

(a) A6 + C(D + E) (bl AB + CD + CE

a

FIGURE 2-7
Three- and Two-Level implemeniation
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Product of Sums implementation

Product of Sums

Another standard form of expressing Boolean functions algebraically is the product
of sums. It is obtained by forming the logical product of sum terms. Each logical
sum term may have any number of literals. An example of a function expressed

in product of sums is
F=XY+2)X+Y+ Z)

This expression has three sum terms of one, two, and three literals. The sum terms
perform an OR operation and the product is an AND operation.

The gate structure of the product of sums expression consists of a group of OR
gates for the sum terms (except for a single literal term) followed by an AND gate.
This is shown in Figure 2-8. This standard type of expression results in a two-level

gating structure.

2-4 MAP SIMPLIFICATION

The complexitv of the digital logic gates that implement a Boolean function is
directly related to the algebraic expression from which the function is implemented.
Although the truth table representation of a function is unique, when expressed
algebraically. the function can appear in many different forms. Boolean expressions
may be simplified by algebraic manipulation as discussed in Section 2-2. However,
this procedure of simplification is awkward because it lacks specific rules to predict
each succeeding step in the manipulative process and it is difficult to determine
whether the simplest expression has been achieved. The map method provides a
straightforward procedure for simplifying Boolean functions of up to four variables.
Maps for iarger number of variables can be drawn but are more cumbersome to
use. The map is also known as the Karnaugh map or K-map.

The map is a diagram made up of squares with each square representing one
minterm of the function. Since any Boolean function can be expressed as a sum
of minterms. it follows that a Boolean function is recognized graphically in the
map from the area enclosed by those squares whose minterms are included in the
function. in fact. the map presents a visual diagram of all possible ways a function
may be expressed in a standard form. By recognizing various patterns. the user
can derive alternate algebraic expressions for the same function, from which the

simplest can be selected.
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Two-Variabie Map

The simplifiea expressions produced by the map are always in one of the iw¢
standard forms: either in sum of products or in product of sums. It will be assumed
that the simpiest aigebraic expression is one with a minimum number of terms and
with the fewest possible number of literals in each term. This produces a circuit
jogic diagram with a minimum number of gates and the minimum number of inputs
to the gates. We will see subsequently that the simplest expression is not necessarily
unique. It is sometimes possible to find two or more expressions that satisty the
simplification criteria. In that case. either solution would be satistactory. This
section covers only the sum of products simplification. In the next section we will
show how to obtain the product of sums simplification.

There are four minterms for a Boolean function with two variables. Hence, the
two-variable map consists of four squares, one for each minterm, as shown in
Figure 2-9. The map is redrawn in (b) to show the relationship between the squares
and the two variables X and Y. The 0 and 1 marked on the left side and the top
of the map designate the values of the variables. Variable X appears complemented
in row 0 and uncomplemented in row 1. Similarly, Y appears complemented in
column 0 and uncomplemented in column 1.

A function of two variables can be represented in a map by marking the squares
that correspond to the minterms of the function. As an example, the function XY
is shown in Figure 2-10(a). Since XY is equal to minterm ms, a 1 is placed inside
the square that belongs 10 11;. Figure 2-10 (b) shows the map for the logical sum
of three minterms.

m1+m2+m3=7(Y+XT’+XY=X+Y

Y © 1
X
mo | M ol xv | xv
my | m3 1) xv | xv
{a) (bl
FIGURE 2-¢

Two-Variable Map

>

T T

T

faj XY (b} X + VY

FIGURE z-16
Representation of Functiong in the Map
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The simplified expression X + Y is determined from the two-square area for
variable X in the second row and the two-square area for Y in the second column.
Together. these two areas enclose the three squares belonging to X or Y. This
simplification can be justified by algebraic manipulation.

XY + ¥V + XY =XY + XY +Y)=(X+X)(Y+X)=X=+7Y

The exact procedure for combining squares in the map will be clarified in the
examples that follow.

There are eight minterms for three binary variables. Therefore, a three-variable
map consists of eight squares as shown in Figure 2-11. The map drawn in part (b)
is marked with binary numbers in each row and each column to show the binary
values of the minterms. Note that the numbers along the columns do not follow
the binary count sequence. The characteristic of the listed sequence is that only
one bit changes in value from one adjacent column to the next.

A minterm square can be located in the map in two ways. We can memorize
the numbers listed in Figure 2-11 (a) for each minterm location, or we can refer
to the binarv numbers along the rows and columns. For example, the square
assigned to m. corresponds to row 1 and column 01. When these two numbers are
concatenated, they give the binary number 101, whose decimal equivalent is 5.
Another way of looking at square mg = XYZ is to consider it to be in the row
marked X and the column belonging to YZ (column 01). Note that there are four
squares where each variable is equal to 1 and four squares where each is equal to
0. The variable appears uncomplemented in the four squares where it is equal to
1 and compiemented in the four squares where it is equal to 0. For convenience,
we write the variable name with the letter symbol along the four squares where it
is uncomplemented.

To understand the usefulness of the map for simplifying Boolean functions, we
must recognize the basic property possessed by adjacent squares. Any two adjacent
squares placed horizontally or vertically (but not diagonally) correspond to min-
terms which differ in only a single variable. The single variable appears uncom-
plemented in one square and complemented in the other. For example, ms and m,
lie in two adjacent squares. Variable Y is complemented in my and uncomplemented

%4 —_—
o0 o1 "1 10
n X
L mo | my | ma | m Ol XvzZ|Xxvz|Xxvz|Xxvz
me | me | my | me le1 xvz{xvz|xvz|xvz
» | L
\"ﬂ-—_—/
z
{b)

(a)

FIGURE 2-11
Three-Variable Map
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in m-. while the other two variables are the same in both squares. The logical sum
of two adjaceni minterms can be simplified intc a single product term of two
variabies.

e+ om- = XYZ + XYZ = XZ(Y +Y) = XZ
Here the two squares differ by variable Y. which can be removed when the logical

sum (OR) of the two minterms is formed. Thus, any two minterms in adjacent
squares that are ORed together produce a product term of two variables.

Simplify the Boolean function
FX.Y.Z) =3Im(2, 3.4,5)

First. a 1 is marked in each minterm that represents the function. This is shown
in Figure 2-12 where the squares for minterms 010, 011, 100, and 101 are marked
with 1's. The next step is to find possible adjacent squares. These are indicated in
the map by two rectangles, each enclosing two 1’s. The upper right rectangle
represents the area enclosed by XY. This is determined by observing that the two-
square area is in Tow 0, corresponding to X, and the last two columns, corresponding
to Y. Similarly. the lower left rectangle represents the product term XY. (The
second row represents X and the two left columns represent Y.) The logical sum
of these two product terms gives the simplified expression.

F=XY + XY [ ]

There are cases where two squares in the map are considered to be adjacent
even though they do not touch each other. In Figure 2-11, m, is adjacent to m,
and m, is adjacent to m,, because the minterms differ by one variable. This can be

readily verified algebraically.

e + me = XYZ + XYZ = XZ(Y + Y) XZ
Consequently. we must modify the definition of adjacent squares to include this
and other similar cases. This is done by considering the map as being drawn on a
surface where the right and left edges touch each other to form adjacent squares.

i
i

I
I

Y
YZ
(e8] 01 17 10
X
0 D1 1
Xj‘l 1 1 ‘
\
[
z
FIGURE 2-12
Map for Example 2-3: F(X, Y, Z
= $m(2, 3. 4,5) = XY = XV
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Consider now any. combination of four adjacent squares in the three-variable
map. Any such combination represent the logical sum of four minterms and results
in an expression of only one literal. As an example. the logical sum of the four
adjacent minterms 0. 2. 4. and 6 reduces to a single literal term Z.

m, + m. + my, + mg = XYZ + XYZ + XYZ + XYZ
=XZ(Y + Y) + XZ(Y + Y)
=XZ+XZ2=2(X+X)=1
The number of adjacent squares that may be combined must always represent

a number that is a power of two such as 1, 2. 4. and 8. As a larger number of
adjacent squares are combined. we obtain a product term with fewer hiterals.

Gne square represents a minterm of three literals.

Two adjacent squares represent a product term of two literals.

Four adjacent squares represent a product term of one hteral.

Eight adjacent squares encompasses the entire map and produces a function
which is always equal to logic-1.

Example 2-4

Simplifv the two Boolean funttions
F](X7 Y7 Z)
Fi(X,Y,Z)=2m(0,2. 4,5 6)

The map for F, is shown in Figure 2-13(a). There are four squares marked with
1’s, one for each minterm of the function. Two adjacent squares are combined in
the third column to give a two-literal term YZ. The remaining two squares with
1’s are also adjacent by the new definition and are shown 1n the diagram with their
values enclosed in half rectangles. These two squares when combined, give the
two-literal term XZ. The simplified function becomes

F,=YZ+ XZ

i

im(3,4,6,7)

174 4 Yz Y
o0 o1 " 11 10 00 01 11 10
X7 X [— w—o—
ol 1 o] 1 1
re— ‘B
iji 1 1 1 XL I 1 1] 1
. — — L L
— \—W———’
z z
{a) FiX, Y. 2Z)=Lmi3, 4,6, 7} (b) FolX, Y, Z) = Emi{C, 2, 5, 6)
= YZ + XZ Z + XY

-~

FIGURE 2-15
Maps for Example 2-2
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00 01 11 10
X 3 1
0 1 10
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FIGURE 2-14
F(X,Y,Z) = tm{1,34.586)
= XZ + X2+ XY
= XZ + XZ +'YZ

The map for F is shown in Fig. 2-13(b). First we combine the four adjacent squares
in the first and last columns to give the single literal term Z. The remaining single
square representing minterm 5 is combined with an adjacent square that is already
being used once. This is not only permissible but rather desirable since the two
adjacent squares give the two-literal term XY while the single square represents
the three-literal minterm XYZ. The simplified function is

F, =2+ XY »

There are occasions when there are two alternate ways of combining squares to
produce equally simplified expressions. An example of this is demonstrated in the
map of Figure 2-14. Minterms 1 and 3 are combined to give the term XZ and
minterms 4 and 6 produce the term X7. However. there are two ways that the
square of minterm 5 can be combined with another adjacent square to produce a
third two-literal term. Combining it with minterm 4 gives the term XY. We could
choose instead to combine it with minterm 1 to give the term YZ. Each of the two
possible simplified expressions listed in Figure 2-14 has three terms of two literals
each; so there are two possible simplified solutions for this function.

If a function is not expressed as a sum of minterms, we can use the map to
obtain the minterms of the function and then simplify the function. It is necessary
to have the algebraic expression in sum of products, from which each product term
is plotted in the map. The minterms of the function are then read directly from

the map. Consider the following Boolean function.
F=2XZ+XY+XYZ+YZ

Three product terms in the expression have two literals and are represented in a
three-variable map by two squares each. The two squares corresponding to the
first term, XZ. are found in Figure 2-15 from the coincidence of X (first row) and
Z (two middle columns) to give squares 001 and 011. Note that when marking 1’s
in the squares. it is possible to find a 1 already placed there from a preceding term.
This happens with the second term XYY which has 1's in squares 011 and 010, but
square 011 is common with the first term XZ so only one-1 is marked in it.
Continuing in this fashion we find that the function has five minterms as indicated
bv the five 1's in the map of Figure 2-15. The minterms are read directly from the

.
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o Xx

X{1 1 11
i

FIGURE 2-15
FIX, Y, 2) = Em(1,2,3.5.7) =
'z + XY

map to be 3. 2.3. 5, and 7. The function as originally given has too many product
terms. It can be simplified to only two terms.

F=27+XY

There are 16 minterms for four binary variables and therefore, a four-variable map
consists of 16 squares as shown in Figure 2-16. The minterm assignment in each
square is indicated in part (a) of the diagram. The map is redrawn in (b) to show
the relationship of the four variables. The rows and columns are numbered in a
special sequence so that only one bit of the binary number changes in value between
any two adjacent squares. The minterms corresponding to each square can be
obtained from the concatenation of the row number with the column number. For
example, the numbers in the third row (11) and the second column (01). when
concatenated, give the binary number 1101, the binary equivalent of 13. Thus, the
square in the third row and second column represents minterm ;.. In addition.
each variable is marked in the map to show the eight squares where it appears

Y
YZ A
00 01 11 10
wx
Mg s my my 00
e Mg my me 01
r ‘ X
maiz | Maa | Mg | Mha 111 !
] i
i w < A
me Mg myq Mo ' 10
L
;'——Y__'-/
Z
{a) {b}

FIGURE 2-1¢
Four-Variable Mag
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¢ The other eight squares where no label is indicated corresponc

uncomplemente
W appears complemented in the first

to the variable being complemented. Thus,
two rows and uncomplemented in the second two TOWS.

The map simplification of four-variable functions is similar to the method used
to simplify three-variable functions. Adjacent squares are defined to be squares
next to each other. In addition, the map is considered to lie on a surface with the
top and bottom edges, as well as the right and left edges, touching each other to
form adjacent squares. For example, n, and m, are two adjacent squares, as are
m, and m,;. The combination of squares that can be taken during the simplification
process in the {our-variablé map is as follows:

One square represents a minterm of four literals.

Two adjacent squares represent a product term of three literals.
Four adjacent squares represent a product term of two literals.
Eight adjacent squares represent a product term of one literal.
Sixteen squares produce a function which is always equal to logic-1.

No other combination of adjacent squares can be used. The following examples
show the procedure for simplifying four-variable Boolean functions.

Example 2-5 Simplify the Boolean function
FW. X, Y, Z) = sm(0,1,2,4,5.6, 8,9,12,13,14)

The minterms of the function are marked with 1’s in the map of Figure 2-17. Eight
adjacent squares in the two left columns are combined to form the one literal term
V. The remaining three 1’s cannot be combined together to give a simplified term.
They must be combined as two or four adjacent squares. The top two 1’s on the
right are combined with the top two 1’s on the left to give the term WZ. Note
again that it 1s permissible t0 take the same square more than once. We are now
left with a square marked with 1 in the third row and fourth column (minterm
1100). Instead of taking this square alone which will give a term of four literals,

YZ Y.
00 o1 11 10
wX —
oofl 1]| 1 :
o1}l 1 “ 1 1
X
1] 1 | 1 1
w
1004 1 i
I
[N
z “
FIGURE 2-17

it

Map for Example 2-5: F = V. WZ+X
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we combine it with squares already used to form an area of four adjacent squares
in the iwo middie rows and the two end columns. giving the term XZ. The simplified
expression i¢ the logical sum of the three terms.

F=Y+WZ-+X

|

e

N

Example 2-6 Simplify the Boolean function
F = ABC + BCD + ABCD + ABC

This function has four variables A, B, C, and D. It is expressed in sum of products
with three terms of three literals each and one term of four literals. The area in
the map covered by this function is shown in Figure 2-18. Each term of three literals
is represented in the map with two squares. ABC is represented in squares 0000
and 0001, BCD in squares 0010 and 1010, and ABC in squares 1000 1001. The
term with four literals is minterm 0110. The function is simplified in the map by
taking the 1's in the four corners to give the term BD. This is possible because i
these four squares are adjacent when the map is drawn on a surface with top and i
bottom or left and right edges touching one another. The two 1’s in the top row L
are combined with the two 1’s in the bottom row to give the term BC. The remaining &

1 in square 0110 is combined with its adjacent square 0010 to give the term ACD.

The simplified function is

F=BD + BC + ACD n

i
cb R
o1 i 10
AB
00 I 1 1J |7
N
01 1
B
11
A J i
10 I 1] | | 1 &
D ot
FIGURE 2-1& {2
Map for Example 2-6; F = BD + BT 23
+ ACD e

2-5 MAP MANIPULATION

When combining adjacent squares in a map. it is necessary to ensure that all the
minterms of the function are included. At the same time it is necessary to minimize
the number of terms in the simplified function by avoiding any redundant terms
whose minterms are already covered by other terms. In this section we consider a




