
CSCI-2500:
Computer Organization

Chapter 2: Instructions:
“Lanaguage of the Computer”

CSCI-2500 Fall 2010, Ch2 P&H

Stored Program Computer
n Recall that computers read instructions

from memory (memory is a big array of
bits).

n Each instruction is represented by a
bunch of bits.

n We can think of the program as input to
the processor – each instruction tells
the processor to perform some
operations.

CSCI-2500 Fall 2010, Ch2 P&H

Processor Instruction Sets
n In general, a computer needs a few

different kinds of instructions:
n mathematical and logical operations
n data movement (access memory)
n jumping to new places in memory

n if the right conditions hold.
n I/O (sometimes treated as data movement)

CSCI-2500 Fall 2010, Ch2 P&H

Instruction Set Design
n An Instruction Set provides a functional

description of a processor.
n It is the visible programmer interface to the

processor.
n Question: how should we go about designing a

general purpose instruction set?
n by general purpose, we want any program to run on

this instruction set and run as efficiently as
possible.

CSCI-2500 Fall 2010, Ch2 P&H

Principle #1: Simplicity Favors Regularity

n We are already familiar with how to
write standard symbolic equations such
as:
A = B + C;
D = A – E;

n We would like our instruction set to look
similar, particularly with respect to the
number of operands.

CSCI-2500 Fall 2010, Ch2 P&H

Simplicity Favors Regularity (cont).
n Let’s translate:

a = b + c;
d = a + e;

n In MIPS assembly language this is:
add a, b, c # a = b + c
sub d, a, e # d = a – e

n MIPS instruction only has two source
operands and places the results in a
destination operand.

n There are however a few exceptions to this
rule....

CSCI-2500 Fall 2010, Ch2 P&H

Another example:
n Translate C language statement:

f = (g + h) – (i + j);
n In MIPS:

add t0, g, h # temp var t0 = g + h
add t1, i, j # temp var t1 = i + j
sub f, t0, t1 # f = t0 – t1

n # is a comment
n t0 and t1 are registers and serve as operands

used by the processor.

CSCI-2500 Fall 2010, Ch2 P&H

Principal #2: Smaller is Faster

n Unlike high-level programming languages,
instructions do not have access to a large number
of variables.

n A small number of storage containers are
provided within the processor to be used by
instructions to read and write data.

n These storage containers are called registers.
n There number is few because space on a

processor is limited.
n Also, access time correlates to size, like a

searching problem.
n think about having to search thru 10 items vs. 1 million.

CSCI-2500 Fall 2010, Ch2 P&H

MIPS registers
n The MIPS processor has 32 general

purpose registers (each is 32 bits wide).
n In MIPS assembly language the register

names look like this:
$s0, $s1, … and $t0, $t1, …

We will find out why they are named like this
a bit later.

CSCI-2500 Fall 2010, Ch2 P&H

MIPS Registers and ‘C’
n For examples derived from ‘C’ code we

will use:
$s0, $s1, $s2, … for ‘C’ variables.
$t0, $t1, $t2, … for temporary values.

CSCI-2500 Fall 2010, Ch2 P&H

a=(b+c)-(d+e);

add $t0, $s1, $s2 # t0 = b+c
add $t1, $s3, $s4 # t1 = d+e
sub $s0, $t0, $t1 # a = $t0–$t1

$s0
$s1 $s2 $s3 $s4

Example: C to MIPS

CSCI-2500 Fall 2010, Ch2 P&H

Registers vs. Memory
n In the MIPS instruction set, arithmetic

operations occur only on registers.
n There may be more variables than

registers.
n What about arrays?
n What about subroutines?

n inside a subroutine we use different
variables.

CSCI-2500 Fall 2010, Ch2 P&H

Data Transfer Instructions
n MIPS includes

instructions that
transfer data between
registers and memory.

n To access some data in
memory, we need to
know the address of the
data.

Memory

Address Data

5
4
3
2
1
0

1011000
1101000
0010000
1010101
0000000
1000100

CSCI-2500 Fall 2010, Ch2 P&H

Bytes vs. Words
n MIPS registers are each 32 bits wide (1

word).
n Memory is organized in to 8-bit bytes.
n In the MIPS architecture, words must

start at addresses that are a multiple of 4.
n alignment restriction.
n on 64 bit architectures, words are 8-byte

aligned

CSCI-2500 Fall 2010, Ch2 P&H

Memory as Words

Data

01001000 11010100 01111001 11010001

11010111 01011010 10000100 00001000

01001010 11001010 01000111 01000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000100

01001000 11010100 01111001 11010001

Address

20

16

12

8

4

0

CSCI-2500 Fall 2010, Ch2 P&H

Load Instructions
n Load means to move from memory into a

register.
n The load instruction needs two things:

n which register??
n which memory location (the address)??

CSCI-2500 Fall 2010, Ch2 P&H

lw: Load Word
n The load word instruction needs to be

told an address that is a multiple of 4.
n In MIPS, the way to specify an address

is as the sum of:
n a constant
n name of a register that holds an address.
n here we have only 2 register operands and

the 3rd is the constant (a compromise!!)

CSCI-2500 Fall 2010, Ch2 P&H

lw destreg, const(addrreg)

“Load Word”

Name of register
to put value in

A number

Name of register to get
base address from

address = contents of (addrreg + const)

CSCI-2500 Fall 2010, Ch2 P&H

Example: lw $s0, 4($s3)
If $s3 has the value 100, this will copy

the word at memory location 104 to the
register $s0.

$s0 <- Memory[104]

CSCI-2500 Fall 2010, Ch2 P&H

Why the weird address mode?
n We need to supply a base (the contents

of the register) and an offset (the
constant).

n Why not just specify the address as a
constant?
n some instruction sets include this type of

addressing.
n It simplifies the instruction set and

helps support arrays and structures.

CSCI-2500 Fall 2010, Ch2 P&H

Integer Array Ex: a=b+c[8];

lw $t0,8($s2) # $t0 = c[8]
add $s0, $s1, $t0 # $s0=$s1+$t0

Is this right?

$s0 $s1 $s2

CSCI-2500 Fall 2010, Ch2 P&H

Words vs. Bytes
n Each byte in memory has a unique

address.
n If the integer array C starts at address

100:
C[0] starts at address 100
C[1] starts at address 104
C[2] starts at address 108

C[i] starts at address 100 + i*4

CSCI-2500 Fall 2010, Ch2 P&H

a=b+c[8]; (fixed)

lw $t0,32($s2) # $t0 = c[8]
add $s0, $s1, $t0 # $s0=$s1+$t0

$s0 $s1 $s2

address of c[8] is c+8*4

CSCI-2500 Fall 2010, Ch2 P&H

Moving from Register to Memory

n Store means to move from a register to
memory.

n The store instruction looks like the load
instruction – it needs two things:
n which register
n which memory location (the address).

CSCI-2500 Fall 2010, Ch2 P&H

sw srcreg, const(addrreg)

“Store Word”

Name of register
to get value from

A number

Name of register to get
base address from

Actual address = (addrreg + const)

CSCI-2500 Fall 2010, Ch2 P&H

Example: sw $s0, 4($s3)
If $s3 has the value 100, this will copy

the word in register $s0 to memory
location 104.

Memory[104] <- $s0

CSCI-2500 Fall 2010, Ch2 P&H

Example C to MIPS task…
n Write the MIPS instructions that would

correspond to the following C code:

c[3]=a+c[2];

n assume that a is $s0 and that c is an
array of 32 bit integers whose starting
address is in $s1

CSCI-2500 Fall 2010, Ch2 P&H

c[3]=a+c[2];

lw $t0, 8($s1) # $t0 = c[2]
add $t0, $t0, $s0 # $t0=$t0+$s0
sw $t0, 12($s1) # c[3] = $t0

CSCI-2500 Fall 2010, Ch2 P&H

Variable Array Index: a=b+c[i]

n Now the index to the array is a variable.

n We have to remember that the address
of c[i] is the base address + 4*i

n We haven’t done multiplication yet, but
we can still do this example.

CSCI-2500 Fall 2010, Ch2 P&H

a=b+c[i];

add $t0,$s3,$s3 # $t0=i+i
add $t0,$t0,$t0 # $t0=i+i+i+i
add $t0,$t0,$s2 # $t0=c+i*4
lw $t1,0($t0) # $t1=c[i]
add $s0,$s1,$t1 # $s0=b+c[i]

$s0 $s1 $s2 $s3

CSCI-2500 Fall 2010, Ch2 P&H

MIPS Instruction Summary

n MIPS has 32 32-bit registers with
names like $s0, $s1, $t0, $t1, …

n Data must be in registers for
arithmetic operations.

n We’ve seen 2 arithmetic ops: add &
sub
n 3 operands – all registers.

n 2 Data transfer instructions: lw, sw
n base/index addressing

CSCI-2500 Fall 2010, Ch2 P&H

MIPS Machine Language

n The processor doesn’t understand
things like this:

add $s0,$s0,$s2

n It does understand things like this:
10000101001010001100010000000101

CSCI-2500 Fall 2010, Ch2 P&H

MIPS Machine Code Instructions
n Each instruction is encoded as 32 bits.

n many processors have variable length
instructions.

n There are a few different formats for
MIPS instructions
n which bits mean what.

CSCI-2500 Fall 2010, Ch2 P&H

Instruction Formats
n break up the 32 bits in to fields.
n Each field is an encoding of part of the

instruction:
n fields that specify what registers to use.
n what operation should be done.
n constants.

CSCI-2500 Fall 2010, Ch2 P&H

MIPS add instruction format

rsop rt rd shamt funct

6 bits5 bits6 bits 5 bits 5 bits 5 bits

32 bits

This format is used for many MIPS instructions (not just add).
Instructions that use this format are called “R-Type” instructions.

CSCI-2500 Fall 2010, Ch2 P&H

op: basic operation (opcode)
rs: first register source operand
rt: second register source operand
rd: destination register
shamt: shift amount

(we can ignore for now)
funct: function code: indicates a specific

type of operation op

rsop rt rd shamt funct

CSCI-2500 Fall 2010, Ch2 P&H

Encodings
n For add:

n op is 010 (000000)
n funct is 3210 (100000)

n Register encodings:
n $s0 is 1610 (10000), $s1 is 1710, …

n $t0 is 810 (01000), $t1 is 910, …

CSCI-2500 Fall 2010, Ch2 P&H

add $s0, $s1, $t0

In HEX, this add instruction is:
0x02288020

rsop rt rd shamt funct

000000 10001 01000 10000 00000 100000

CSCI-2500 Fall 2010, Ch2 P&H

MIPS sub Instructions
n Same format as the add instruction.

n op is 010 (000000)

n funct is 3410 (100010)

CSCI-2500 Fall 2010, Ch2 P&H

sub $s3, $t1, $s0

In HEX, this sub instruction is:
0x01309822

rsop rt rd shamt funct

000000 01001 10000 10011 00000 100010

CSCI-2500 Fall 2010, Ch2 P&H

LW/SW Instruction Format?

n Different format is necessary (no place to put
the constant)

n What do we do with the constant (index)? It is a
16 bit number?

n Should we KLUDGE fields together from the “R-
type” format??

n This brings up the 3rd design principal:
GOOD DESIGN DEMANDS GOOD

COMPROMISE!!!
n Create a new instruction format:“I-Type”

CSCI-2500 Fall 2010, Ch2 P&H

MIPS I-Type instruction format

rsop rt address

16 bits6 bits 5 bits 5 bits

32 bits

rs is the base register
rt is the destination of a load (source of a store)

address is a signed integer

CSCI-2500 Fall 2010, Ch2 P&H

lw and sw instructions
lw: The op field is 3510 (100011)

sw: The op field is 4310 (101011)

Only 1 bit difference!

CSCI-2500 Fall 2010, Ch2 P&H

lw $s0, 24($t1)
100011 01001 10000 0000000000011000

rsop rt address

sw $s0, 24($t1)
101011 01001 10000 0000000000011000

rsop rt address

CSCI-2500 Fall 2010, Ch2 P&H

Sample Exercise

n What is the MIPS machine code for
the following C statement:

c[3] = a + c[2];

CSCI-2500 Fall 2010, Ch2 P&H

c[3] = a + c[2];

n First we can work on the Assembly
instructions – assume a is $s0 and the
base address of c is in $s1:

lw $t0, 8($s1) # $t0 = c[2]
add $t0,$t0,$s0 # $t0 = a+c[2]
sw $t0, 12($s1) # c[3] = a+c[2]

CSCI-2500 Fall 2010, Ch2 P&H

lw $t0, 8($s1)

op is 3510 for lw
rs is 1710 for $s1
rt is 810 for $t0
address is 810

100011 10001 01000 0000000000001000

rsop rt address

CSCI-2500 Fall 2010, Ch2 P&H

add $t0,$t0,$s0

rsop rt rd shamt funct

000000 01000 10000 01000 00000 100000

op is 010 for add
funct is is 3210 for add
rs is 810 for $t0
rt is 1610 for $s0
rd is 810 for $t0
shamt is 010

CSCI-2500 Fall 2010, Ch2 P&H

sw $t0, 12($s1)

op is 4310 for sw
rs is 1710 for $s1
rt is 810 for $t0
address is 1210

101011 10001 01000 0000000000001100

rsop rt address

CSCI-2500 Fall 2010, Ch2 P&H

Machine code for c[3] = a+c[2];

Congratulations – you are now on your way
to being qualified to be an assembler!

10001110001010000000000000001000 lw $t0, 8($s1)

00000001000100000100000000100000 add $t0,$t0,$s0

10101110001010000000000000001000 sw $t0, 12($s1)

CSCI-2500 Fall 2010, Ch2 P&H

MIPS Instructions (so far)

n We’ve seen 2 arithmetic ops: add &
sub
n 3 operands – all registers.

n 2 Data transfer instructions: lw, sw
n base/index addressing

n Two machine language instruction
formats:
n R-Type (3 registers)
n I-Type (2 registers and offset)

CSCI-2500 Fall 2010, Ch2 P&H

Jumping Around
n There are instructions that change the

sequence of instructions fed to the
processor, that jump to a new part of
the program.

n Jumping is also called branching.
n Sometimes we want to jump only when

some condition is true (or false).

CSCI-2500 Fall 2010, Ch2 P&H

C Program that requires jumping
if (grade >= 98)

lettergrade = ‘A’;

else if (grade >= 96)

lettergrade = ‘B’;

else

lettergrade = ‘F’;

CSCI-2500 Fall 2010, Ch2 P&H

The flow of the program

grade>=98

grade>=96

lettergrade=‘A’

lettergrade=‘B’lettergrade=‘F’

CSCI-2500 Fall 2010, Ch2 P&H

Possible layout in memory

jump if grade >= 98

jump if grade >= 96

lettergrade = ‘F’

jump

lettergrade = ‘B’

jump

lettergrade = ‘A’

if (grade >= 98)

lettergrade = ‘A’;

else if (grade >= 96)

lettergrade = ‘B’;

else

lettergrade = ‘F’;

yes

yes

CSCI-2500 Fall 2010, Ch2 P&H

MIPS instructions for jumping
beq reg1, reg2, address

Branch if Equal : if the contents of register
reg1 are equal to the contents of register
reg2 then jump to address.

If the registers are not equal, don’t do
anything special (continue on to the next
instruction).

CSCI-2500 Fall 2010, Ch2 P&H

bne reg1, reg2, address

Branch if Not Equal: if the contents of register
reg1 is not equal to the contents of register
reg2, then jump to address.

If the registers are equal, don’t do anything
special (continue on to the next instruction).

CSCI-2500 Fall 2010, Ch2 P&H

beq r1,r2,address: What is address?

n In assembly language we create labels in
the program that can be used as the
address (example next slide).

n In machine language the address is an
offset from the location of the current
instruction.

CSCI-2500 Fall 2010, Ch2 P&H

Example: if (a==b) c=c+d;
a=b+b;

$s0 $s1 $s2 $s3

bne $s0,$s1,L1 # go to L1 if a!=b
add $s2,$s2,$s3 # c=c+d

L1: add $s0,$s1,$s1 # a=b+b

label

CSCI-2500 Fall 2010, Ch2 P&H

Machine Code for bne and beq
Instruction Format: I-Type:

rsop rt address

16 bits6 bits 5 bits 5 bits

32 bits

CSCI-2500 Fall 2010, Ch2 P&H

The address Field of I-Type Instructions

MIPS supports 32 bit addresses.
If we only have a 16 bit address we can’t have very

large programs!
The address field is relative to the address of the

current instruction.
n recall, all MIPS instructions are 32 bits...this will be an

example of our 4th design principal...but we’ll get to
that later.

n this is just base/index addressing with the PC as the
base register. So, what the heck is a PC???

rsop rt address

16 bits6 bits 5 bits 5 bits

CSCI-2500 Fall 2010, Ch2 P&H

PC: The Program Counter
n There is a special register called the

program counter that holds the address
of the current instruction.

n Normally, this register is incremented
by 4 each instruction (MIPS
instructions are 4 bytes each).

n When a branch happens – the address
is added to the PC register.

CSCI-2500 Fall 2010, Ch2 P&H

The value of PC during an instruction.

n During the execution of an instruction, the
processor always adds 4 to the PC
register.

n This happens very early in the instruction.

n As far as we are concerned the PC always
holds the address of the next instruction.

CSCI-2500 Fall 2010, Ch2 P&H

Instruction Alignment
n Since MIPS instructions are always

stored in memory at an address on a
word boundary (divisible by 4), the
offset specified is actually a word
offset (not a byte offset).

n A value of 1 means “add 4 to PC”.
n A value of 100 means “add 400 to PC”.

CSCI-2500 Fall 2010, Ch2 P&H

Assembly vs. Machine Code

n The assembler calculates the difference
between the address of the instruction
following the bne instruction and the
instruction labeled L1.

n This difference is used in the address field of
the machine code for the bne instruction.

n In this case the difference is 1 (1 instruction).

bne $s0,$s1,L1 # go to L1 if a!=b
add $s2,$s2,$s3 # c=c+d

L1: add $s0,$s1,$s1 # a=b+b

CSCI-2500 Fall 2010, Ch2 P&H

bne, beq limitations
n The offset from the PC is actually a

signed integer value.
n we can jump backwards or forwards.

n The maximum offset is:
215 instructions = 217 bytes

n The MIPS memory is 232 bytes !

CSCI-2500 Fall 2010, Ch2 P&H

Unconditional Jump
n MIPS includes an instruction that always

jumps:
j address

n In assembly language we just use a label
again.

j L1

CSCI-2500 Fall 2010, Ch2 P&H

Loops in Assembly
while (a!=b)
a=a+i;

$s0 $s1

Loop: beq $s0,$s1,Eol
add $s0,$s0,$s2
j Loop

Eol:

$s2

CSCI-2500 Fall 2010, Ch2 P&H

while (a[i] == k)
i=i+j;

L1: add $t0,$s0,$s0 # $t0=i*2
add $t0,$t0,$t0 # $t0=i*4
add $t0,$t0,$s3 # $t0 = addr of a[i]
lw $t1,0($t0)# $t1 = a[i]
bne $t1,$s1,L2# if a[i]!=k goto L2
add $s0,$s0,$s2 # i=i+j
j L1 # goto L1

L2:

$s0 $s1$s2$s3

CSCI-2500 Fall 2010, Ch2 P&H

j instruction format

New Instruction Format: J-Type:

op address

26 bits6 bits

32 bits

CSCI-2500 Fall 2010, Ch2 P&H

J-Type address field

n The address field is treated as an
instruction address (not a byte address).

n The rightmost 28 bits of the PC are
replaced with this address (which is left-
shifted 2 bits).

n It’s not relative to the PC!
n We have to build very large programs (with

more than 226 instructions) very carefully!

Actually the compiler/assembler/linker takes care of this for us!

CSCI-2500 Fall 2010, Ch2 P&H

What about < and > ?
n We often want to compare numbers and jump

if one number is less-than or greater than
another number.

n MIPS does not include a conditional jump
instruction that does this, instead there are
some instructions that compare numbers and
store the result in a register.

n We can then use beq, bne with the result of
the comparison.

CSCI-2500 Fall 2010, Ch2 P&H

Set if Less Than: slt

slt dstreg, reg1, reg2

dstreg is set to a 1 if reg1 is less than
reg2

dstreg is set to a 0 if reg1 is not less
than reg2

CSCI-2500 Fall 2010, Ch2 P&H

if (a<b)

slt $t0,$s0,$s2 # $t0 <- a<b
bne $t0,$zero,L1 # jump if a<b

$s0 $s2

$zero is a MIPS register
that always holds the value 0!

CSCI-2500 Fall 2010, Ch2 P&H

Another unconditional jump
jr reg

n “Jump Register”
n put the contents of the register in to the

PC register.

n The book describes using this with a
jump table to build a C switch
statement.

CSCI-2500 Fall 2010, Ch2 P&H

Instruction Summary (so far)
n Arithmetic: add sub

n Data Movement: lw sw

n Jumping around: bne beq slt j jr

n We can almost build real programs…!!

CSCI-2500 Fall 2010, Ch2 P&H

Byte operations
n In C programs we often deal with

strings of characters (ASCII
characters).

n Each character is 1 byte.
n We need instructions that can deal with

1 byte at a time.

CSCI-2500 Fall 2010, Ch2 P&H

Load Byte: lb
lb destreg, const(addrreg)

n Moves a single byte from memory to the
rightmost 8 bits of destreg.

n The other 24 bits of destreg are set
to 0
n actually the byte is sign extended (more on

this when we talk about arithmetic).
n Base/Index addressing (just like lw).

CSCI-2500 Fall 2010, Ch2 P&H

Store Byte: sb

sb srcreg, const(addrreg)

• Moves a single byte from the
rightmost 8 bits of destreg to
memory.

• Base/Index addressing (just like sw).

CSCI-2500 Fall 2010, Ch2 P&H

Copying a C string.
n C strings are terminated with a 0.

n the last byte in the string has the value
000000002 = 010

n Strings are like arrays of characters.
n now each array item is 1 byte only!

CSCI-2500 Fall 2010, Ch2 P&H

Assembly for strcpy(str1,str2)

n We aren’t yet worried about making this a real
subroutine, we just want the code that can do
the copying.

n Assume register $s1 holds the address of
str1, and $s2 holds the address of str2

n We need a loop that copies from the address
in $s2 to the address in $s1
n increments $s2 and $s1 each time.

dest source

CSCI-2500 Fall 2010, Ch2 P&H

A start at strcpy

Loop:lb $t0,0($s2)# $to = *str2
sb $t0,0($s1)# *str1 = $t0

need to increment $s1,$s2

bne $t0,$zero,Loop #

CSCI-2500 Fall 2010, Ch2 P&H

Incrementing a register
n We could assume some register has the

value 1 in it.
n it would have to get there some how!

n New instruction: Add Immediate

CSCI-2500 Fall 2010, Ch2 P&H

What about constants?
n Should we read them from memory??

n What performance problems does this
create?

n It turns out, instructions with constants
are very frequent...

n What does Amdahl’s Law say??
n Principal #4: Execute the Common Case

Fast
n here, put constants directly into the

instruction!!

CSCI-2500 Fall 2010, Ch2 P&H

Add Immediate
addi destreg, reg1, const

Adds a constant to reg1 and puts the sum
in destreg.

The term “immediate” means the value
(the constant) is already available to the
processor (it’s part of the instruction).

CSCI-2500 Fall 2010, Ch2 P&H

addi is an I-Type instruction

rt is the destination register
rs is a source operand.
immediate is the constant.

16 bit “signed” constant!

rsop rt immediate

16 bits6 bits 5 bits 5 bits

CSCI-2500 Fall 2010, Ch2 P&H

Incrementing a register
n To add 1 to the register $s0:

addi $s0,$s0,1

n To add 1234 to the register $t3:
addi $t3,$t3,1234

n To add 1,000,000 to the register $s2: ???

CSCI-2500 Fall 2010, Ch2 P&H

Finishing strcpy

Loop:lb $t0,0($s2)# $to = *str2
sb $t0,0($s1)# *str1 = $t0
addi $s2,$s2,1 # str2++
addi $s1,$s1,1 # str1++
bne $t0,$zero,Loop #

CSCI-2500 Fall 2010, Ch2 P&H

32 bit constants
n Sometimes we need to deal with 32

bit constants!
n not often, but it happens…

n We can now load the lower 16 bits
with any constant value:

addi $s0,$zero,const

n We need some way to put 16 bits in to
the left half of a register.

CSCI-2500 Fall 2010, Ch2 P&H

Load Upper Immediate: lui
lui destreg, const

n const is a 16 bit immediate value.

n The lower 16 bits of destreg are all set
to 0! (have to load the upper half first!)

CSCI-2500 Fall 2010, Ch2 P&H

Immediates are fun!
n There is also a version of slt that uses

an immediate value:
slti destreg, reg1,const

n Will set destreg to 1 if reg1 is less
than the 16 bit constant.

CSCI-2500 Fall 2010, Ch2 P&H

Write this in MIPS Assembly

for (i=0;i<10;i++) {
a[i] = a[i+1];

}

a is an array of char!

CSCI-2500 Fall 2010, Ch2 P&H

Solution: the address of a is in $s1

add $s0,$zero,$zero # i=0
L1: slti $t1,$s0,10 # i<10?

beq $t1,$zero,L2 # no-jump
add $t2,$s0,$s1 # t2 is addr of a[i]
lb $t3,0($t2)# t3 is a[i]
addi $t2,$t2,1 # t2 is addr of a[i+1]
sb $t3,0($t2)# a[i+1] = t3
addi $s0,$s0,1 # i++
j L1 # go to L1

L2:

SPIM
Ref: Appendix A, Web Links

http://pages.cs.wisc.edu/~larus/spim.html

CSCI-2500 Fall 2010, Ch2 P&H

MIPS Simulation
n SPIM is a simulator

n reads a MIPS assembly language program.
n simulates each instruction.
n displays values of registers and memory
n supports breakpoints and single stepping
n provides simple I/O for interacting with

user.

CSCI-2500 Fall 2010, Ch2 P&H

SPIM Versions
n SPIM is the command line version.

n XSPIM is X-Windows version (Unix
workstations).

n There is also a Windows version.

CSCI-2500 Fall 2010, Ch2 P&H

SPIM Program
n MIPS assembly language.
n Must include a label “main” – this will be

called by the SPIM startup code (allows
you to have command line arguments).

n Can include named memory locations,
constants and string literals in a “data
segment”.

CSCI-2500 Fall 2010, Ch2 P&H

General Layout
n Data definitions start with .data

directive

n Code definition starts with .text
directive
n “text” is the traditional name for the

memory that holds a program.
n Usually have a bunch of subroutine

definitions and a “main”.

CSCI-2500 Fall 2010, Ch2 P&H

Simple Example
.data # data memory

foo .word 0 # 32 bit variable

.text # program memory

.align 2 # word alignment

.globl main # main is global

main:

CSCI-2500 Fall 2010, Ch2 P&H

Data definitions
n You can define variables/constants with:

n .word : defines 32 bit quantities.
n .byte: defines 8 bit quantities
n .asciiz: zero-delimited ascii strings
n .space: allocate some bytes

CSCI-2500 Fall 2010, Ch2 P&H

Data Examples
.data

prompt: .asciiz “Hi Dr. C”
msg: .asciiz “The answer is ”
x: .word 0
y: .word 0
str: .space 100

CSCI-2500 Fall 2010, Ch2 P&H

Simple I/O
n SPIM provides some simple I/O using

the
“syscall” instruction. The specific I/O
done depends on some registers.
n You set $v0 to indicate the operation.
n Parameters in $a0, $a1

CSCI-2500 Fall 2010, Ch2 P&H

I/O Functions

$v0 Function Parameter
1 print_int $a0 is int

4 print_string $a0 is address of
string

5 read_int returned in $v0

8 read_string $a0 is address of
buffer, $a1 is length

CSCI-2500 Fall 2010, Ch2 P&H

Example: Reading an int
addi $v0,$zero,5
syscall

now $a0 has the integer typed by
a human in the SPIM console

CSCI-2500 Fall 2010, Ch2 P&H

Printing a string

.data
msg: .asciiz “SPIM IS FUN”

main: li $v0,4
la $a0,msg
syscall

CSCI-2500 Fall 2010, Ch2 P&H

SPIM subroutines
n The stack is set up for you – just use
$sp

n You can view the stack in the data
window.

n main is called as a subroutine (have it
return using jr $ra).

n We’ll talk a great deal about subroutines

CSCI-2500 Fall 2010, Ch2 P&H

Sample SPIM programs (on the web)
n multiply.s: multiplication subroutine

based on repeated addition and a test
program that calls it.

n fact.s: computes factorials using the
multiply subroutine.

n sort.s: the sorting program from the
text.

n strcpy.s: the strcpy subroutine and
test code.

MIPS Subroutines
and Programs
Ref: Chapter 2

CSCI-2500 Fall 2010, Ch2 P&H

Subroutines

main:
multiply 3 x 2
addi $a0,$zero,3
addi $a1,$zero,2

call the subroutine
jal multiply

print out the result
move $s0,$v0
li $v0,4
la $a0, msg
syscall

li $v0,1
move $a0,$s0
syscall

li $v0,10
syscall

mult subroutine needs some registers
so we save $t0 first
2 arguments $a0 and $a1 are multiplied
using repeated addition

multiply:
sub $sp,$sp,4 # make room for $t0
sw $t0,0($sp) # put t0 on the stack

start with $t0 = 0
add $t0,$zero,$zero

mult_loop:
loop on a1
beq $a1,$zero,mult_eol

add another $a0
add $t0,$t0,$a0
decrement $a1
sub $a1,$a1,1
j mult_loop

mult_eol:
put the result in $v0
add $v0,$t0,$zero

restore $t0
lw $t0,0($sp)
add $sp,$sp,4
return to caller
jr $ra

CSCI-2500 Fall 2010, Ch2 P&H

Subroutine Issues
n How to call a subroutine

n how to pass parameters
n how to get the return value

n How to write a subroutine
n where to look for

parameters
n saving registers
n returning a value
n returning to the caller

CSCI-2500 Fall 2010, Ch2 P&H

Special Registers

$a0-$a4: argument registers
n this is where we put arguments before

calling a subroutine.

$v0, $v1: return value registers
n where subroutines put return values

$ra: return address register
n holds the address the subroutine should

jump to when it’s done.

CSCI-2500 Fall 2010, Ch2 P&H

Jump and Link: jal address
n Puts the address of the next instruction

(PC+4) in the $ra register.
n Jumps to the specific address.

n Addressing mode is just like the j
instruction (26 bit absolute address).

CSCI-2500 Fall 2010, Ch2 P&H

Returning from the Subroutine
n Assuming the subroutine doesn’t clobber

the $ra register:
n when the subroutine is done, it jumps to the

address in $ra

jr $ra

CSCI-2500 Fall 2010, Ch2 P&H

What if the subroutine uses a register?

Accepted convention:
$t0, $t1, … $t7 are always OK to use.

n if you call a subroutine and you need the
value of $t0 to be the same after the call,
you must save it in memory!

n caller saves $t0 … $t7

$s0-$s7 must not be changed by a
subroutine unless you save them first!

n If you need them in your subroutine you
need to save the previous value and restore
them before returning.

n callee saves $s0 … $s7

CSCI-2500 Fall 2010, Ch2 P&H

Saving registers and the Stack
n Most of the time we use whatever

registers we want inside subroutines.
n must save and restore $s0-$s7

n This happens so often there is a special
register and data structure used to
support saving and restoring registers.

The Stack!!!!!

CSCI-2500 Fall 2010, Ch2 P&H

The Stack
n The stack is an area of memory

reserved for the purpose of saving
registers.

n The $sp register (stack pointer)
holds the address of the top of the
stack.

n The stack grows and shrinks as
registers are saved and restored.

CSCI-2500 Fall 2010, Ch2 P&H

$sp and Memory

$sp

$sp

before/after call inside subroutine

CSCI-2500 Fall 2010, Ch2 P&H

Stack handling code
n Suppose your subroutine needs to use 3

registers: $s0, $s1 and $s2:
n first make room for saving three words by

subtracting 12 from the stack pointer
sub $sp,$sp,12

n now put copies of the three registers on
the stack.

sw $s0,0($sp)
sw $s1,4($sp)
sw $s2,8($sp)

CSCI-2500 Fall 2010, Ch2 P&H

Stack handling code (cont.)
n Before returning, your subroutine should

restore the 3 registers:
lw $s2,8($sp)
lw $s1,4($sp)
lw $s0,0($sp)

n And put the stack pointer back to its original
value:

add $sp,$sp,12

CSCI-2500 Fall 2010, Ch2 P&H

Why bother?
n We write subroutines so that they

can be called from any other code.
n as far as the caller is concerned, $s0-
$s7 don’t change.

n The stack provides a single
mechanism that will work no matter
who called the subroutine.

CSCI-2500 Fall 2010, Ch2 P&H

Exercise
n Create a multiplication subroutine.

n $a0 is multiplied by $a1 and the product is
returned in $v0

n We’ve already looked at the multiply
code, all we need to do is make this a
subroutine.

CSCI-2500 Fall 2010, Ch2 P&H

multiply in ‘C’
int multiply(int x, int y) {

prod=0;
while (y>0) {
prod = prod + x;
y--;

}
return(prod);

}

CSCI-2500 Fall 2010, Ch2 P&H

multiply:
add $t0,$zero,$zero # prod=0

m_loop:
beq $a1,$zero,m_eol # while y>0
add $t0,$t0,$a0# prod = prod+x
subi $a1,$a1,1 # y--;
j m_loop

m_eol:
add $v0,$t0,$zero # return(prod)
jr $ra

Assembly Multiply
int multiply(int x, int y) {

prod=0;
while (y>0) {

prod = prod + x;
y--;

}
return(prod);

}

CSCI-2500 Fall 2010, Ch2 P&H

Not a typical example!
n multiply doesn’t need many registers and

it doesn’t call any subroutines.
n no need to save and restore registers

n Let’s go back and make our assembly
version of strcpy a subroutine.

CSCI-2500 Fall 2010, Ch2 P&H

strcpy in C
strcpy(char *str1, char *str2)
{
do
{

*str1 = *str2;
str1++;
str2++;

}
while(*str1);

}

CSCI-2500 Fall 2010, Ch2 P&H

strcpy in Assembly:

str1 is $s1 and str2 is $s2
Loop:lb $t0,0($s2)# $to = *str2

sb $t0,0($s1)# *str1 = $t0
addi $s2,$s2,1 # str2++
addi $s1,$s1,1 # str1++
bne $t0,$zero,Loop #

n Uses registers $s0, $s1 and $t0

n Remember our convention: callee (the
subroutine) must save and restore $s0-
$s7

CSCI-2500 Fall 2010, Ch2 P&H

strcpy subroutine
strcpy:

addi $sp,$sp,-8 # make room for 2 regs
sw $s2,4($sp) # save $s2
sw $s1,0($sp) # save $s1
add $s1,$a0,$zero # move $a0 to $s1
add $s2,$a1,$zero # move $a1 to $s2

Loop:
lb $t0,0($s2) # $to = *str2
sb $t0,0($s1) # *str1 = $t0
addi $s2,$s2,1 # str2++
addi $s1,$s1,1 # str1++
bne $t0,$zero,Loop # jump if not done

lw $s1,0($sp) # restore $s0
lw $s2,4($sp) # restore $s1
addi $sp,$sp,8 # adjust stack
jr $ra # return

CSCI-2500 Fall 2010, Ch2 P&H

Recursive Exercise

Write the MIPS Assembly Language
code for the following C program:

int factorial(int x) {
if (x<1) return 1;
else return x * factorial(x-1);

}

CSCI-2500 Fall 2010, Ch2 P&H

Recursion - Issues
n Since this subroutine calls another

subroutine (in this case it calls itself!):
n we need to save $ra
n we need to save any temp registers ($t0-
$t7) before calling a subroutine.

n only if we need the value of a temp register to
still be the same after the call!

CSCI-2500 Fall 2010, Ch2 P&H

Outline of factorial subroutine

n save registers $ra, and $a0 (the
argument x)

n check to see if x<1, if so just return 1
n if x>=1:

n call factorial(x-1) and put result in $a1
n put x in $a0
n call multiply: result in $v0
n restore $ra and $a0
n return

CSCI-2500 Fall 2010, Ch2 P&H

factorial (part 1)
factorial:

make room for 2 registers
addi $sp,$sp,-8

save $ra and $a0 on stack
sw $a0,4($sp)
sw $ra,0($sp)

slti $t0,$a0,1 # is x < 1 ?
bne $t0,$zero,L1 # yes - go to L1

CSCI-2500 Fall 2010, Ch2 P&H

factorial (part 2) when x>=1

sub $a0,$a0,1 # x--;
jal factorial # call fact(x-1)

Now multiply the result by x
a0 is no longer x,
but we still have it on the stack

lw $a0,4($sp)
add $a1,$v0,$zero # $v0 is fact(x-1)
jal multiply # get the product

CSCI-2500 Fall 2010, Ch2 P&H

factorial (part 3)
restore $a0 and $ra before returning
multiply may have changed $a0
(so we must restore again)
$v0 is already the return value

lw $ra,0($sp) # restore $ra
lw $a0,4($sp) # restore $a0
add $sp,$sp,8 # restore the stack
jr $ra

CSCI-2500 Fall 2010, Ch2 P&H

factorial (part 4) x<1
L1:
x<1 so we just return 1
addi $v0,$zero,1
$a0 and $ra have not changed,
so there is no need to restore
but we need to restore the stack
add $sp,$sp,8
jr $ra

CSCI-2500 Fall 2010, Ch2 P&H

Ex: Simulate factorial(3)
n Step through the code, keeping track

of:
n all the used registers
n $sp and the contents of the stack

n Spim makes this easy! We’ll talk about
this shortly…

CSCI-2500 Fall 2010, Ch2 P&H

What about saving $t0-$t7?
n The convention says we should expect

subroutines to use $t0-$t7.
n If we use them and need the value to be

the same after a subroutine call – we
need to save them before calling the
subroutine.

n We also need to restore them after
calling the subroutine.

CSCI-2500 Fall 2010, Ch2 P&H

Saving registers
n The code is the same – use the stack:

add $sp,$sp,-12
sw $t1,8($sp)
sw $t0,4($sp)
sw $ra,0($sp)

jal whatever

lw $t1,8($sp)
lw $t0,4($sp)
lw $ra,0($sp)
add $sp,$sp,4

add $sp,$sp,-8
sw $ra,0($sp)
sw $t0,4($sp)

jal whatever

lw $ra,0($sp)
lw $t0,4($sp)
add $sp,$sp,4

CSCI-2500 Fall 2010, Ch2 P&H

Writing & Calling Subroutines
n When calling a subroutine:

n you don’t need to worry about $s0-$s7, they
won’t change.

n you do need to worry about $t0-$t7 they
may change.

n When writing a subroutine:
n you need to save/restore the callers $s0-
$s7 if you use them.

n $t0-$t7 are always free to use

CSCI-2500 Fall 2010, Ch2 P&H

More Writing Subroutines
n Careful with $ra – if you call a

subroutine this will change $ra (and
your return won’t work!). Might need
to save/restore $ra.

n Careful with $a0-$a4 and $v0-$v1.

n ALWAYS: Make sure $sp is the same
as when you were called!!!!

CSCI-2500 Fall 2010, Ch2 P&H

Pseudoinstructions
n There are many instructions you can use

in MIPS assembly language that don’t
really exist!

n They are a convienence for the
programmer (or compiler) – just a
shorthand notation for specifying some
operation(s).

CSCI-2500 Fall 2010, Ch2 P&H

MIPS move pseudoinstruction
move destreg, sourcereg

There is no move instruction, but the
assembler lets us pretend.

The assembler can achieve this using
add and $zero:

move $s0, $s1 is really add $s0,$s1,$zero

CSCI-2500 Fall 2010, Ch2 P&H

Blt: Branch if Less Than
n Branch if less than is a pseudoinstruction

based on slt and bne:

blt $s0,$s1,foo is really:
slt $at,$s0,$s1
bne $at,foo

Register $at is reserved for use by the
assembler (we can’t use it – the assembler
needs it for pseudoinstructions).

CSCI-2500 Fall 2010, Ch2 P&H

Some useful pseudoinstructions

li load immediate

la load address

sgt, sle, sge set if greater than,
…

bge, bgt, ble, blt conditional
branching

