
CSCI-2500:
Computer Organization

Processor Design

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Datapath
n The datapath is the interconnection of

the components that make up the
processor.

n The datapath must provide connections
for moving bits between memory,
registers and the ALU.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Control
n The control is a collection of signals

that enable/disable the inputs/outputs
of the various components.

n You can think of the control as the
brain, and the datapath as the body.
n the datapath does only what the brain tells

it to do.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Processor Design

The sequencing and execution of
instructions

n We already know about many of the
individual components that are necessary:
n ALU, Multiplexors, Decoders, Flip-Flops

n We need to discuss how to use a clock

n We need to think about registers and
memory.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

The Clock
The clock generates a never-ending

sequence of alternating 1s and 0s.

All operations are synchronized to the
clock.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Clocking Methodology
n Determines when (relative to the clock)

a signal can be read and written.
n Read: signal value is used by some

component.
n Written: a signal value is generated by

some component.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Simple Example: Enabled AND
n We want an AND gate that holds it’s

output value constant until the clock
switches from 0 (lo) to 1 (hi).

n We can use a flip-flop to hold the inputs
to the AND gate constant during the
time we want the output constant.

n We use a clocked flip-flop to make
things happen when the clock changes.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

D Flip-Flop Reminder

D
Q

Q

Clock

The output (Q) changes to reflect D only
when the Clock is a 1.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

D Flip-Flop Timing

Q

D

C
1

0

1

0

1

0

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Clocked AND gate

D
flip-flop

D
flip-flop

D

C
Q

D

C
Q

A

B

A•B (clocked)

Clock

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Edge-triggered Clocking
n Values stored are updated (can change)

only on a clock edge.
n When the clock switches from 0 to 1

everybody allows signals in.
n everybody means state elements
n combinational elements always do the same

thing, they don’t care about the clock (that’s
why we added the flip-flops to our AND gate).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

State Elements
n Any component that stores one or more

values is a state element.
n The entire processor can be viewed as a

circuit that moves from one state
(collection of all the state elements) to
another state.

n At time i a component uses values
generated at time i-1.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Register File
Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

Contains multiple registers
•each holds 32 bits

•Two output ports (read ports)

•One input port (write port)

•To change the value of a register:
•supply register number
•supply data
•clock (the Write control signal)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Implementation of Read Ports

Figure B.19

M
u
x

Register 0

Register 1

Register n – 1

Register n

M
u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Implementation of Write

n - t o - 1

d e c o d e r

R e g i s t e r 0

R e g i s t e r 1

R e g i s t e r n – 1

C

C

D

D

R e g i s t e r n

C

C

D

D

R e g i s t e r n u m b e r

W r i t e

R e g i s t e r d a t a

0

1

n – 1

n

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Memory
n Memory is similar to a very large register file:

n single read port (output)
n chip select input signal
n output enable input signal
n write enable input signal
n address lines (determine which memory element)
n data input lines (used to write a memory element)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

4 x 2 Memory (SRAM)
D

latch Q

D

C

Enable

D
latch Q

D

C

Enable

D
latch Q

D

C

Enable

D
latch Q

D

C

Enable

D
latch Q

D

C

Enable

D
latch Q

D

C

Enable

D
latch Q

D

C

Enable

D
latch Q

D

C

Enable

2-to-4
decoder

Write enable

Address

Din[0]Din[1]

Dout[1] Dout[0]

0

1

2

3

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Memory Usage
n For now, we treat memory as a single

component that supports 2 operations:
n write (we change the value stored in a

memory location)
n read (we get the value currently stored in a

memory location).
n We can only do one operation at a time!

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Instruction & Data Memory
n It is useful to treat the memory that

holds instructions as a separate
component.
n instruction memory is read-only

n Typically there is really one memory
that holds both instructions and data.
n as we will see when we talk more about

memory, the processor often has two
interfaces to the memory, one for
instructions and one for data!

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Designing a Datapath for MIPS
n We start by looking at the datapaths

needed to support a simple subset of
MIPS instructions:
n a few arithmetic and logical instructions
n load and store word
n beq and j instructions

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Functions for MIPS Instructions

n We can generalize the functions we
need to:
n using the PC register as the address, read a

value from the memory (read the
instruction)

n Read one or two register values (depends on
the specific instruction).

n ALU Operation , Memory read or write, …
n Possibly change the value of a register.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Fetching the next instruction
n PC Register holds the address
n Memory holds the instruction

n we need to read from memory.
n Need to update the PC

n add 4 to current value

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Instruction Fetch DataPath

PC

Instruction
memory

Read
address

Instruction

4

Add

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Supporting R-format instructions

Includes add, sub, slt, and & or
instructions.

Generalization:
n read 2 registers and send to ALU.
n perform ALU operation
n store result in a register

rsop rt rd shamt funct

6 bits5 bits6 bits 5 bits 5 bits 5 bits

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

MIPS Registers
n MIPS has 32 general purpose registers.
n Register File holds all 32 registers

n need 5 bits to select a register
n rs, rt & rd fields in R-format instructions.

n MIPS Register File has 2 read ports.
n can get at both source registers at the

same time.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Datapath for R-format Instructions

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Load and Store Instructions
Need to compute the address

n offset (part of the
instruction)

n base (stored in a register).
For Load:

n read from memory
n store in a register

For Store:
n read from register
n write to memory

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Computing the address
n 16 bit signed offset is part of the

instruction.
n We have a 32 bit ALU.

n need to sign extend the offset (to 32 bits).
n Feed the 32 bit offset and the contents

of a register to the ALU
n Tell the ALU to “add”.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Load/Store Datapath

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Supporting beq
n 2 registers compared for equality

n 16 bit offset used to compute target
address.
n signed offset is relative to the PC
n offset is in words not in bytes!

n Might branch, might not (need to
decide).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Computing target address
n Recall that the offset is actually

relative to the address of the next
instruction.
n we always add 4 to the PC, we must make

sure we use this value as the base.
n Word vs. Byte offset

n we just need to shift the 16 bit offset 2
bits to the right (fill with 2 zeros).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Branch Datapath

1 6 3 2
S ig n

ex te nd

Z er oA L U

S u m

S h ift
l e ft 2

T o b ra n c h
c o ntro l l o g ic

B ra nc h ta rg e t

P C + 4 fro m in st r uc ti o n da ta p a t h

I n s tr u c tio n

A d d

R e gis te r s
W rite
re gi s te r

R e a d
d a ta 1

R e a d
d a ta 2

R e a d
re gi s te r 1

R e a d
re gi s te r 2

W rite
d a t a

R e g W rit e

A L U op e r a ti o n
3

Control & DataPath

Ref: Chapter 4

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Datapath
n The datapath is the interconnection of

the components that make up the
processor.

n The datapath must provide connections
for moving bits between memory,
registers and the ALU.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Control
n The control is a collection of signals

that enable/disable the inputs/outputs
of the various components.

n You can think of the control as the
brain, and the datapath as the body.
n the datapath does only what the brain tells

it to do.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Datapaths

We looked at individual datapaths that
support:

1. Fetching Instructions
2. Arithmetic/Logical Instructions
3. Load & Store Instructions
4. Conditional branch

We need to combine these in to a
single datapath.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Issues
n When designing one datapath that can

be used for any operation:
n the goal is to be able to handle one

instruction per cycle.
n must make sure no datapath resource needs

to be used more than once at the same
time.

n if so – we need to provide more than one!

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Sharing Resources
n We can share datapath resources by

adding a multiplexor (and a control line).
n for example, the second input to the ALU

could come from either:
n a register (as in an arithmetic instruction)
n from the instruction (as in a load/store – when

computing the memory address).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Sharing with a Multiplexor Example

Control

ADD

Operand 1

B Operand 2
C

A
A+B (Control==0)

A+C (Control==1)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Combining Datapaths for memory
instructions and arithmetic instructions

n Need to share the ALU
n For memory instructions used to compute

the address in memory.
n For Arithmetic/Logical instructions used to

perform arithmetic/logical operation.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

I n s t r u c t i o n

1 6 3 2

R e g i s t e r s

W r i t e

r e g i s t e r

R e a d

d a t a 1

R e a d

d a t a 2

R e a d

r e g i s t e r 1

R e a d

r e g i s t e r 2

D a t a

m e m o r y

W r i t e

d a t a

R e a d

d a t a

M

u

x

M

u

xW r i t e

d a t a

S i g n

e x t e n d

A L U

r e s u lt

Z e r o

A L U

A d d r e s s

R e g W r i t e

A L U o p e r a t i o n3

M e m R e a d

M e m W r i t e

A L U S r c

M e m t o R e g

Sharing Multiplexors

New Controls

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Adding the Instruction Fetch
n One memory for instructions, separate

memory for data.
n otherwise we might need to use the memory

twice in the same instruction.
n Dedicated Adder for updating the PC

n otherwise we might need to use the ALU
twice in the same instruction.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

P C

I n s t r u c t i o n

m e m o r y

R e a d

a d d r e s s

I n s t r u c t i o n

1 6 3 2

R e g i s t e r s

W r i t e
r e g i s t e r

W r i t e
d a t a

R e a d

d a t a 1

R e a d

d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

S i g n

e x t e n d

A L U
r e s u l t

Z e r o

D a t a

m e m o r y

A d d r e s s

W r i t e

d a t a

R e a d

d a t a
M
u
x

4

A d d

M
u
x

A L U

R e g W r i t e

A L U o p e r a t i o n
3

M e m R e a d

M e m W r i t e

A L U S r c
M e m t o R e g

Two Memory Units

Dedicated Adder

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Need to add datapath for beq
n Register comparison (requires ALU).

n Another adder to compute target
address.
n One input to adder is sign extended offset,

shifted by 2 bits.
n Other input to adder is PC+4

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

New adder and mux

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Whew!

n Keep in mind that the datapath we
now have supports just a few MIPS
instructions!

n Things get worse (more complex) as
we support other instructions:

j jal jr addi

n We won’t worry about them now…

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Control Unit
n We need something that can generate

the controls in the datapath.
n Depending on what kind of instruction

we are executing, different controls
should be turned on (asserted) and off
(deasserted).

n We need to treat each control
individually (as a separate boolean
function).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Controls
n Our datapath includes a bunch of

controls:
n ALU operation (3 bits)
n RegWrite
n ALUSrc
n MemWrite
n MemtoReg
n MemRead
n PCSrc

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

ALU Operation Control
n A 3 bit control (assumes the ALU

designed in chapter 4):

ALU Control Input Operation
000 AND
001 OR
010 add
110 subtract
111 slt

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

ALU Functions for other instructions
lw , sw (load/store): addition

beq: subtraction

add, sub, and, or, slt
(arithmetic/logical): All R-format
instructions

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

R-Format Instructions

rsop rt rd shamt funct

6 bits5 bits6 bits 5 bits 5 bits 5 bits

Operation is specified by some bits in the
funct field in the instruction.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

MIPS Instruction OPCODEs

n The MS 6 bits are an OPCODE that
identifies the instruction.

n R-Format: always 000000
n (funct identifies the operation)

lw sw beq
100011 101011 000100

varies depending on instructionop

6 bits

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Generating ALU Controls

We can view the 3 bit ALU control as 3
boolean functions. Inputs are:
n the op field (OPCODE)
n funct field (for R-format instructions

only)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Simplifying The Opcode
For building the ALU Operation Controls,

we are interested in only 4 different
opcodes.

We can simplify things by first reducing
the 6 bit op field to a 2 bit value we will
call ALUOp

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Instruction ALUOp funct ALU action ALU
controls

lw 00 ?????? add 010

sw 00 ?????? add 010

beq 01 ?????? subtract 110

add 10 100000 add 010

sub 10 100010 subtract 110

and 10 100100 and 000

or 10 100101 or 001

slt 10 101010 slt 111

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Build a Truth Table
n We can now build a truth table for the 3

bit ALU control.
n Inputs are:

n 2 bit ALUOp
n 6 bit funct field

n Abbreviated Truth Table: only show the
rows we care about!

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

ALUOp funct ALU
Control

0 0 x x x x x x 010
x 1 x x x x x x 110
1 x x x 0 0 0 0 010
1 x x x 0 0 1 0 110
1 x x x 0 1 0 0 000
1 x x x 0 1 0 1 001
1 x x x 1 0 1 0 111

x means “don’t care”

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Adding the ALU Control
n We can now add the ALU control to the

datapath:
n inputs to this control come from the

instruction and from ALUOp
n If we try to show all the details the

picture becomes too complex:
n just plop in an “ALU Control” box.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

M e mto R e g

M e m R e a d

M e m Wri te

A L U O p

A L U Src

R e g D st

P C

I n s tru ct io n
m e m o ry

R e a d
a d d re s s

In s tr u ctio n
[3 1 – 0]

In st ruc tio n [2 0 – 1 6]

In st ruc tio n [2 5 – 2 1]

A d d

I n st ru c tio n [5 – 0]

R e g Wri te

4

16 3 2In st ru c tio n [1 5 – 0]

0
Re gis te rs

Wr ite
re g is te r
Wr ite
d a ta

Write
d a ta

R e a d
d a ta 1

R e a d
d a ta 2

R e a d
re g is te r 1

R e a d
re g is te r 2

S ig n
e x te nd

A L U
re su l t

Ze ro

D a ta
m e m o ry

A d d re s s R e a d
d a ta

M
u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

In st ruc tio n [1 5 – 1 1]

A L U
co ntro l

S h i ft
le ft 2

P C S rc

A L U

A dd A L U
re s u lt

Shows which bits from the instruction
are fed to register file inputs ALU Control

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Implementing Other Controls
n The other controls in out datapath must

also be specified as functions.
n We need to determine the inputs to all

the functions.
n primarily the inputs are part of the

instructions, but there are exceptions.
n Need to define precisely what

conditions should turn on each control.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

RegDst Control Line

n Controls a multiplexor that selects on
of the fields rt or rd from an R-
format or I-format instruction.

n I-Format is used for load and store.
n sw needs to write to the register rt.

rsop rt rd shamt funct

rsop rt address

R-format
I-format

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

RegDst usage
n RegDst should be

n 0 to send rt to the write register # input.
n 1 to send rd to the write register # input.

n RegDst is a function of the opcode
field:
n If instruction is sw, RegDst should be 0
n For all other instructions RegDst should be
1

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

RegWrite Control
n a 1 tells the register file to write a

register.
n whatever register is specified by the write

register # input is written with the data on
the write register data inputs.

n Should be a 1 for arithmetic/logical
instructions and for a store.

n Should be a 0 for load or beq.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

ALUSrc Control

n MUX that selects the source for the
second ALU operand.
n 1 means select the second register file

output (read data 2).
n 0 means select the sign-extended 16 bit

offset (part of the instruction).
n Should be a 1 for load and store.
n Should be a 0 for everything else.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

MemRead Control

• A 1 tells the memory to put the contents of the
memory location (specified by the address
lines) on the Read data output.

• Should be a 1 for load.
• Should be a 0 for everything else.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

MemWrite Control

• 1 means that memory location (specified by
memory address lines) should get the value
specified on the memory Write Data input.

• Should be a 1 for store.
• Should be a 0 for everything else.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

MemToReg Control

• MUX that selects the value to be stored in a
register (that goes to register write data input).
– 1 means select the value coming from the memory

data output.
– 0 means select value coming from the ALU output.

• Should be a 1 for load and any
arithmetic/logical instructions.

• Should be a 0 for everything else (sw, beq).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

PCSrc Control

• MUX that selects the source for the value
written in to the PC register.
– 1 means select the output of the Adder used to

compute the relative address for a branch.
– 0 means select the output of the PC+4 adder.

• Should be a 1 for beq if registers are equal!
• Should be a 0 for other instructions or if

registers are different.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

PCSrc depends on result of ALU operation!

n This control line can’t be simply a
function of the instruction (all the
others can).

n PCSrc should be a 1 only when:
n beq AND ALU zero output is a 1

n We will generate a signal called “branch”
that we can AND with the ALU zero
output.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Truth Table for Control
Instructi

on
RegDst ALUSrc Memto-

Reg
Reg

Write
Mem
Read

Mem
Write

Branch ALUOp

R-
format

1 0 0 1 0 0 0 10

lw 0 1 1 1 1 0 0 00

sw x 1 x 0 0 1 0 00

beq x 0 x 0 0 0 1 01

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

P C

I n str u c ti o n
m e m o ry

R e a d
a d dr e s s

I n s tr u c t io n
[3 1 – 0]

I n s tr u ct i o n [2 0 1 6]

I n s tr u ct i o n [2 5 2 1]

A d d

I ns t ru ct io n [5 0]

M e mto R e g

A L U O p

M e m W r it e

R e g W rit e

M e m R e a d

B r a nc h

R e g D s t

A L U S rc

I n s tr u c t i o n [3 1 2 6]

4

1 6 3 2
I n s tr u c t i o n [1 5 0]

0

0M
u
x

0

1

C o n tr o l

A d d
A L U

re s u lt

M
u
x

0

1

R e gi s t er s
W r it e
r e g i s te r

W r it e
d a t a

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s te r 1

R e a d
r e g i s te r 2

S i g n
e x t e n d

M
u
x

1

A L U
r e s ul t

Z er o

P C S r c

D at a
m e m or y

W ri te
d a t a

R e ad
da ta

M
u
x

1

I n s tr u c t i o n [1 5 1 1]

A L U
co n tr o l

S h i f t
l e ft 2

A L U
A d d r e ss

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Single Cycle Instructions
n View the entire datapath as a

combinational circuit.
n We can follow the flow of an instruction

through the datapath.
n single cycle instruction means that there

are not really any steps – everything just
happens and becomes finalized when the
clock cycle is over.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

add $t1,$t2,$t3
n Control Lines:

n ALU Controls specify an ALU add operation.
n RegWrite will be a 1 so that when the clock

cycle ends the value on the Register Write
Input lines will be written to a register.

n all other control lines are 0.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

lw $t1,offset($t2)

n Control Lines:
n ALU Control set for an add operation.
n ALUSrc is set to 1 to indicate the second

operand is sign extended offset.
n MemRead would be a 1.
n RegDst would select the correct bits from

the instruction to specify the dest.
register.

n RegWrite would be a 1.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Disadvantage of single cycle operation

If we have instructions execute in a single
cycle, then the cycle time must be long
enough for the slowest instruction.
n all instructions take the same time as the

slowest.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Multicycle Implementation
n Chop up the processing of instructions in

to discrete stages.
n Each stage takes one clock cycle.

n we can implement each stage as a big
combinational circuit (like we just did for
the whole thing).

n provide some way to sequence through the
stages.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Advantages of Multicycle
n Only need those stages required by an

instruction.
n the control unit is more complex, but

instructions only take as long as necessary.
n We can share components

n perhaps 2 different stages can use the
same ALU.

n We don’t need to duplicate resources.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Additional Resources for Multicycle

n To implement a multicycle
implementation we need some additional
registers that can be used to hold
intermediate values.
n instruction
n computed address
n result of ALU operation
n …

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

PC

Memory

Address

Instruct ion
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU
Memory

data
register

A

B

ALUOut

Multicycle Datapath

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Multicycle Datapath for MIPS

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

MC DP with Control

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Instruction Stages
n Instruction Fetch
n Instruction decode/register fetch
n ALU operation/address computation
n Memory Access
n Register Write

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Complete Multicyle Datapath & Control

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Instruction Fetch/Decode (IF/ID)
State Machine

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Memory Reference State Machine

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

R-type Instruction State Machine

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Branch/Jump State Machine

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Put it all together!

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Control for Multicycle
n Need to define the controls
n Need to come up with some way to

sequence the controls
n Two techniques

n finite state machine
n microprogramming

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Finite State Machine

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

MicroProgramming (sec. 5.7)
n The idea is to build a (very small)

processor to generate the controls
signals at the right time.

n At each stage (cycle) one
microinstruction is executed – the
result changes the value of the control
signals.

n Somebody writes the microinstructions
that make up each MIPS instruction.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Example microinstructions
Fetch next instruction:

n turn on instruction memory read
n feed PC to memory address input
n write memory data output in to a holding

register.

Compute Address:
n route contents of base register to ALU
n route sign-extended offset to ALU
n perform ALU add
n write ALU output in to a holding register.

Control Signals

microinstruction

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Sequencing
n In addition to setting some control

signals, each microinstruction must
specify the next microinstruction that
should be executed.

n 3 Options:
n execute next microinstruction (default)
n start next MIPS instruction (Fetch)
n Dispatch (depends on control unit inputs).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Microinstruction Format
n A bunch of bits – one for each control

line needed by the control unit.
n bits specify the values of the control lines

directly.
n Some bits that are used to determine

the next microinstruction executed.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Dispatch Sequencing
n Can be implemented as a table lookup.

n bits in the microinstruction tell what row in
the table.

n inputs to the control unit tell what column.
n value stored in table determines the

microaddress of the next microinstruction.
n This is a simplified description (called a

microdescription)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Exceptions & Interrupts
n Hardest part of control is implementing

exceptions and interrupts – i.e., events that
change the normal flow of instruction
execution.

n MIPS convention
n Exception refers to any unexpected change in

control flow w/o knowing if the cause is internal or
external.

n Interrupts refer to only events who are externally
caused.

n Ex. Interrupts: I/O device request (ignore for
now)

n Ex. Exceptions: undefined instruction, arithmetic
overflow

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Handling Exceptions
n Let’s implemented exceptions for handling

n Undefined instruction
n Overflow

n Basic actions
n Save the offending instruction address in the Exception Program

Counter (EPC).
n Transfer control to the OS at some specified address
n Once exception is handled by OS, then either terminate the

program or continue on using the EPC to determine where to restart.
n OS actions are determined based on what caused the exception.

n So, OS needs a Cause register which determines which path w/i the
exception

n Alternative implementation – Vectored Interrupts – where each
cause of an exception or interrupt is given a specific OS address to
jump to.

n We’ll use the first method.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Extending the Multicycle D&C
n What datapath elements to add?

n EPC: a 32-bit register used to hold the address of
the affected instruction.

n Cause: A 32-bit register used to record the cause
of the exception. (undef instruction = 0 and
overflow = 1).

n What control lines to add?
n EPCWrite and Cause write control signals to allow

regs to be written.
n IntCause (1-bit) control signal to set the low-order

bit of the cause register to the appropriate value.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Revised Datapath & Control

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Final FSM w/ exception handling

Pipelining

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Multicycle Instructions
n Chop each instruction in to stages.
n Each stage takes one cycle.
n We need to provide some way to

sequence through the stages:
n microinstructions

n Stages can share resources (ALU,
Memory).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelining
n We can overlap the execution of

multiple instructions.
n At any time, there are multiple

instructions being executed – each in a
different stage.

n So much for sharing resources ?!?

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

The Laundry Analogy
Non-pipelined approach:

1. run 1 load of clothes through washer
2. run load through dryer
3. fold the clothes (optional step for

students)
4. put the clothes away (also optional).

Two loads? Start all over.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelined Laundry
n While the first load is drying, put the second

load in the washing machine.
n When the first load is being folded and the

second load is in the dryer, put the third load
in the washing machine.

n Admittedly unrealistic scenario for CS
students, as most only own 1 load of clothes…

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Laundry Performance
n For 4 loads:

n non-pipelined approach takes 16 units of
time.

n pipelined approach takes 7 units of time.

n For 816 loads:
n non-pipelined approach takes 3264 units of

time.
n pipelined approach takes 819 units of time.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Execution Time vs. Throughput
n It still takes the same amount of time

to get your favorite pair of socks clean,
pipelining won’t help.

n However, the total time spent away
from CompOrg homework is reduced.

It's the classic “Socks vs. CompOrg”
issue.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Instruction Pipelining
First we need to break instruction

execution into discrete stages:
1. Instruction Fetch
2. Instruction Decode/ Register Fetch
3. ALU Operation
4. Data Memory access
5. Write result into register

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Operation Timings
n Some estimated timings for each of

the stages:

Instruction Fetch 200 ps

Register Read 100 ps

ALU Operation 200 ps

Data Memory 200 ps

Register Write 100 ps

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Comparison

I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

800 p s
I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

800 p s
I n s t r u c t i o n

f e t c h

800 p s

T i m e

l w $ 1 , 1 0 0 ($ 0)

l w $ 2 , 2 0 0 ($ 0)

l w $ 3 , 3 0 0 ($ 0)

2 4 6 8 1 0 1 2 1 4 1 6 1 8

2 4 6 8 1 0 1 2 1 4

. . .

P r o g r a m

e x e c u t i o n

o r d e r

(i n i n s t r u c t i o n s)

I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

T i m e

l w $ 1 , 1 0 0 ($ 0)

l w $ 2 , 2 0 0 ($ 0)

l w $ 3 , 3 0 0 ($ 0)

200 p s
I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

200 p s
I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

200 p s 200 p s 200 p s 200 p s 200 p s

P r o g r a m

e x e c u t i o n

o r d e r

(i n i n s t r u c t i o n s)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

RISC and Pipelining
n One of the major advantages of RISC

instruction sets is the relative simplicity of
a pipeline implementation.
n It’s much more complex in a CISC processor!!

n RISC (MIPS) design features that make
pipelining easy include:
n single length instruction (always 1 word)
n relatively few instruction formats
n load/store instruction set
n operands must be aligned in memory (a single

data transfer instruction requires a single
memory operation).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipeline Hazard
n Something happens that means the next

instruction cannot execute in the
following clock cycle.

n Three kinds of hazards:
n structural hazard
n control hazard
n data hazard

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Structural Hazards
n Two stages require the same resource.

n What if we only had enough electricity to
run either the washer or the dryer at any
given time?

n What if MIPS datapath had only one
memory unit instead of separate instruction
and data memory?

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Avoiding Structural Hazards
n Design the pipeline carefully.
n Might need to duplicate resources

n an Adder to update PC, and ALU to perform
other operations.

n Detecting structural hazards at
execution time (and delaying execution)
is not something we want to do
(structural hazards are minimized in the
design phase).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Control Hazards
n When one instruction needs to make a

decision based on the results of another
instruction that has not yet finished.

n Example: conditional branch
n The instruction that is fed to the pipeline

right after a beq depends on whether or
not the branch is taken.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

beq Control Hazard

slt $t0,$s0,$s1
beq $t0,$zero,skip
addi $s0,$s0,1

skip:
lw $s3,0($t3)

slt

beq

???

The instruction to follow the beq could be either the
addi or the lw, it depends on the result of the beq
instruction.

a = b+c;
if (x!=0)

y++;
...

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

One possible solution - stall
n We can include in the control unit the

ability to stall (to keep new instructions
from entering the pipeline until we know
which one).

n Unfortunately conditional branches are
very common operations, and this would
slow things down considerably.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

A Stall

I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

T i m e

b e q $ 1 , $ 2 , 4 0

a d d $ 4 , $ 5 , $ 6

l w $ 3 , 3 0 0 ($ 0)
4 n s

I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

2 n s

I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

2 n s

2 4 6 8 1 0 1 2 1 4 1 6

P r o g r a m

e x e c u t i o n

o r d e r

(i n i n s t r u c t i o n s)

To achieve a 1 cycle stall (as shown above), we need
to modify the implementation of the beq instruction
so that the decision is made by the end of the second
stage.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Another strategy

n Predict whether or not the branch
will be taken.

n Go ahead with the predicted
instruction (feed it into the pipeline
next).

n If your prediction is right, you don't
lose any time.

n If your prediction is wrong, you need
to undo some things and start the
correct instruction

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Predicting branch not taken

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch Reg ALU Data

access Reg
2 ns

Instruction
fetch Reg ALU Data

access Reg
2 ns

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5 ,$6

or $7, $8, $9

Instruction
fetch Reg ALU Data

access Reg

2 4 6 8 10 12 14

2 4 6 8 10 12 14

Instruction
fetch Reg ALU Data

access Reg

2 ns

4 ns

bubble bubble bubble bubble bubble

Program
execution
order
(in instructions)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Dynamic Branch Prediction
n The idea is to build hardware that will

come up with a prediction based on the
past history of the specific branch
instruction.

n Predict the branch will be taken if it has
been taken more often than not in the
recent past.
n This works great for loops! (90% + correct).
n We’ll talk more about this …

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Yet another strategy: delayed branch

n The compiler rearranges instructions so
that the branch actually occurs delayed
by one instruction from where its
execution starts

n This gives the hardware time to
compute the address of the next
instruction.

n The new instruction is hopefully useful
whether or not the branch is taken (this
is tricky - compilers must be careful!).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Delayed Branch

add $s2,$s3,$s4
beq $t0,$zero,skip
addi $s0,$s0,1

skip:
lw $s3,0($t3)

beq

add

Order reversed!

The compiler must generate code that differs
from what you would expect.

a = b+c;
if (x!=0)

y++;
...

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Data Hazard
n One of the values needed by an

instruction is not yet available (the
instruction that computes it isn't done
yet).

n This will cause a data hazard:
add $t0,$s1,$s2
addi $t0,$t0,17

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

IF Reg ALU Data
Access Reg

IF Reg ALU Data
Access Reg

add $t0,$s1,$s2

addi $t0,$t0,17

selects $s1 and $s2 for ALU op

adds $s1 and $s2

stores sum in $t0

selects $t0 for ALU op
time

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Handling Data Hazards

n We can hope that the compiler can
arrange instructions so that data
hazards never appear.
n this doesn't work, as programs generally

need to use previously computed values
for everything!

n Some data hazards aren't real - the
value needed is available, just not in
the right place.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

IF Reg ALU Data
Access Reg

IF Reg ALU Data
Access Reg

add $t0,$s1,$s2

addi $t0,$t0,17

ALU has finished computing sum

ALU needs sum from the previous ALU operation
time

The sum is available when needed!

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Forwarding
n It's possible to forward the value

directly from one resource to another
(in time).

n Hardware needs to detect (and handle)
these situations automatically!
n This is difficult, but necessary.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

add $s0, $t0, $t1

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBEX

IF ID MEMEX

Time
2 4 6 8 10

MEM

WBMEM

Picture of Forwarding

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Another Example

Ti m e
2 4 6 8 1 0 1 2 1 4

l w $ s0, 2 0($t1)

su b $t2 , $ s0 , $ t3

Prog ra m
exe c utio n
ord er
(in in st ructio n s)

IF I D W BM E ME X

I F I D W BM E ME X

bu b ble bu bble bu b ble bu b ble bu bble

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelining and CPI
n If we keep the pipeline full, one

instruction completes every cycle.
n Another way of saying this: the average

time per instruction is 1 cycle.
n even though each instruction actually takes

5 cycles (5 stage pipeline).

CPI=1

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Correctness
Pipeline and compiler designers must be

careful to ensure that the various
schemes to avoid stalling do not change
what the program does!
n only when and how it does it.
n It's impossible to test all possible

combinations of instructions (to make sure
the hardware does what is expected).

n It's impossible to test all combinations even
without pipelining!

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelined Datapath
We need to use a multicycle datapath.

n includes registers that store the result of
each stage (to pass on to the next stage).

n can't have a single resource used by more
than one stage at time.

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

r u
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
resultM

u
x

ALU
Zero

ID/EX

Data
memory

Address

Pipelined Datapath – 5 stages

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

lw and pipelined datapath
n We can trace the execution of a load

word instruction through the datapath.

n We need to keep in mind that other
instructions are using the stages not in
use by our lw instruction!

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

I n s tr u c t i o n

m e m o r y

A d d r e s s

4

3 2

0

A d d A d d
r e s ul t

S h i f t

l e ft 2

In
s

t r
u

ct
i o

n
I F / I D E X/ M E M M E M / W B

M
u
x

0

1

A d d

P C

0
W ri t e
d a t a

M
u
x

1

R e g i st e r s

R e a d
d at a 1

R e a d
d at a 2

R e a d
r e g i s t er 1

R e a d
r e g i s t er 2

1 6
S i g n

e x t e n d

W ri te
r e g i s t er

W ri te
d a t a

R e a d
d a t a

1

A L U
r e s u l t

M
u
x

A L U

Z e r o

ID / E X

I n s t r u c t i o n f e t c h

l w

A d d r e s s

D at a

m e m or y

Stage 1: Instruction Fetch (IF)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

I n s t r u c t i o n

m e m o r y

A d d r e s s

4

3 2

0

A d d
A d d

r e s u l t

S h if t

l e ft 2

In
s

t r
u

ct
io

n

I F /I D E X / M E M

M
u
x

0

1

A d d

P C

0
W ri t e
d a t a

M
u
x

1

R e g i st e r s

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g is t e r 1

R e a d
r e g is t e r 2

1 6
S i g n

e x t e n d

W ri t e
r e g is t e r

W ri t e
d a t a

R e a d
d a t a

1

A L U
r e s u l t

M
u
x

A L U

Z e r o

I D / E X M E M / W B

I n s t r u c t i o n d e c o d e

l w

A d d r e s s

D at a

m e m o r y

Stage 2: Instruction Decode (ID)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

I n s t r u c t i o n

m e m o r y

A d d r e s s

4

3 2

0

A d d
A d d

r e s u l t

S h if t

l e ft 2

In
s

t r
u

ct
io

n

I F /I D E X / M E M

M
u
x

0

1

A d d

P C

0
W ri t e
d a t a

M
u
x

1

R e g i st e r s

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g is t e r 1

R e a d
r e g is t e r 2

1 6
S i g n

e x t e n d

W ri t e
r e g is t e r

W ri t e
d a t a

R e a d
d a t a

1

A L U
r e s u l t

M
u
x

A L U

Z e r o

I D / E X M E M / W B

I n s t r u c t i o n d e c o d e

l w

A d d r e s s

D at a

m e m o r y

Stage 2: Instruction Decode (ID)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

I n s t r u c t i o n

m e m o r y

A d d r e s s

4

3 2

0

A d d
A d d

r e s u l t

S h if t

l e f t 2

In
s

tr
u

c
ti

o
n

I F /I D E X / M E M

M
u
x

0

1

A d d

P C

0
W ri t e
d a t a

M
u
x

1

R e g i s t e r s

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
re g i s t e r 1

R e a d
re g i s t e r 2

1 6
S i g n

e x t e n d

W r i t e
re g i s t e r

W r i t e
d a t a

R e a d
d a t a

1

A L U
r e s u l t

M
u
x

A L U

Z e r o

I D / E X M E M / W B

E x e c u t i o n

l w

A d d r e s s

D a t a

m e m o r y

Stage 3: Execute (EX)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

I n s t r u c t i o n

m e m o r y

A d d r e s s

4

3 2

0

A d d
A d d

r e s u l t

S h i f t

l e f t 2

In
st

ru
c

ti
o

n
I F / I D E X / M E M

M
u
x

0

1

A d d

P C

0
W r i t e
d a t a

M
u
x

1

R e g i s t e r s

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

1 6
S i g n

e x t e n d

W r it e
r e g i s t e r

W r it e
d a t a

R e a d
d a t a

D a t a

m e m o r y

1

A L U
r e s u l t

M
u
x

A L U

Z e r o

I D / E X M E M / W B

M e m o r y

l w

A d d r e s s

Stage 4: Memory Access (MEM)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

In str u c ti on

m e m o r y

A d d r e s s

4

3 2

0

A d d
A d d

r e s u l t

S h if t

l e f t 2

In
st

ru
ct

i o
n

I F /I D E X / M E M

M
u
x

0

1

A d d

P C

0
W ri t e
d at a

M
u
x

1

R e g i st e r s

R e a d
d at a 1

R e a d
d at a 2

R e a d
r e g is t er 1

R e a d
r e g is t er 2

1 6
S i g n

e x t e n d

W ri t e
d a t a

R e a d
d a t aD a t a

m e m o r y

1

A L U
r e s u l t

M
u
x

A L U

Z e r o

I D / E X M E M / W B

W r i t e b a c k

l w

W ri t e
r e g is t er

A d d r e s s

Stage 5: WriteBack (WB)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

A Bug!
n When the value read from memory is

written back to the register file, the
inputs to the register file (write
register #) are from a different
instruction!

n To fix the bug we need to save the part
of the lw instruction (5 bits of it
specify which register should get the
value from memory).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

New Datapath

Instruction
memory

Address

4

32

0

A dd A dd
resul t

Shi ft
l eft 2

In
s t

ru
c ti

on

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

A ddress

Wri te
data

M
u
x

1
Regi sters

Read
data 1

Read
data 2

Read
regi ster 1

Read
regi ster 2

16
Si gn

ex tend

Wri te
regi ster

Wri te
data

Read
data

Data
memory

1

A LU
resul t

M
u
x

A LU
Zero

ID/EX

Figure 4.41

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Store Word (sw) Data Path Flow (EX)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

SW Data
Path (cont.)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Final Corrected Datapath

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Ex. With 5 instructions

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Ex: Alt View

Pipeline Control

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelined DP w/ signals

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Control lines for pipeline stages

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelined DP w/ Control

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelined Dependencies

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipeline w/ Forwarding Values

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

ALU & Regs: B4, After Fwding

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Datapath w/ forwarding

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Forwarding Control Table

ForwardA = 00 ID/EX 1st ALU op
from reg file

ForwardA= 10 EX/MEM 1st ALU op fwd
from prior ALU
result

ForwardA = 01 MEM/WB 1st ALU op fwd
from data mem
or earlier
result

MUX Control Source Reason

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Forwarding Control Table (cont.)

ForwardB = 00 ID/EX 2nd ALU op
from reg file

ForwardB= 10 EX/MEM 2nd ALU op fwd
from prior ALU
result

ForwardB = 01 MEM/WB 2nd ALU op fwd
from data mem
or earlier result

MUX Control Source Reason

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

EX Stage Hazard Detection and
Resolution

n if(EX/MEM.RegWrite &&
EX/MEM.RegisterRd != 0 &&
EX/MEM.RegisterRd ==
ID/EX.RegisterRs)

ForwardA = 10
n if(EX/MEM.RegWrite &&

EX/MEM.RegisterRd != 0 &&
EX/MEM.RegisterRd ==
ID/EX.RegisterRt)

ForwardB = 10

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Mem Stage Hazard Detection & Resolution

n if(MEM/WB.RegWrite &&
MEM/WB.RegisterRd != 0 &&
EX/MEM.RegisterRd != ID/EX.RegisterRs &&
MEM/WB.RegisterRd = ID/EX.RegisterRs)
ForwardA = 01

n if(MEM/WB.RegWrite &&
MEM/WB.RegisterRd != 0 &&
EX/MEM.RegisterRd != ID/EX.RegisterRt &&
MEM/WB.RegisterRd = ID/EX.RegisterRt)
ForwardB = 01

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Data Hazards & Stalls
n Need Hazard detection unit in addition

to forwarding unit.
n Check for Load Instructions based on…

n if(ID/EX.MemRead &&
(ID/EX.RegisterRt==IF/ID.RegisterRs ||
ID/EX.RegisterRt==IF/ID.RegisterRt))
StallThePipeline

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Where Forwarding Fails…must stall

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

How Stalls Are Inserted

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelined control w/ fwding & hazard detection

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

What about those crazy branches?

Problem: if the branch is
taken, PC goes to addr
72, but don’t know until
after 3 other instructions
are processed

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Branch Hazards: Assume Branch Not Taken

n Recall stalling until branch is complete is too
ssssssllllooooowwww!!

n So, assume the branch is not taken…
n If taken, instructions fetched/decoded must be

discarded or “squashed”
n discard instructions, just change the original control

values to 0’s (similar to load-use hazard),
n BIG DIFFERENCE: must flush the pipeline in the IF, ID

and EX stages
n How can we reduce the “flush” costs when a branch is

taken?

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Reducing the Delay of Branches
n Let’s move the branch execution earlier

in the pipeline.
n EFFECT: fewer instructions need to be

flushed.
n NEED two actions:

n Compute branch target address (EASY –
can do on IF/ID stage).

n Eval of branch decision (HARD)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Faster Branch Decision
n Recall, for BEQ instruction, we would

compare two regs during the ID stage
and test for equality.

n Equality can be tested by XORing the
two regs. (a.k.a. equality unit)

n Need additional ID stage forwarding
and hazard detection hardware

n This has 2 complicating factors…

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Faster Branch Decison: Complex Factors

1. In ID stage, now we need to decide whether
a “bypass” path to the “equality” unit is
needed.

• ALU forwarding logic is not sufficient, and so we
need new forwarding logic for the equality unit.

2. Can stall due to a data hazard.
• if an r-type instruction comes before the branch

who operands are used in the comparision in the
branch, a stall is needed

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Example Pipelined Branch

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12, $2, $5
48 or $13, $2, $6
52 and $14, $4, $2
56 slt $15, $6, $7

……..
72 lw $4, 50($7)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Branch
Processing
Example

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Dynamic Branch Prediction
n From the phase “There is no such thing as a typical

program”, this implies that programs will branch is
different ways and so there is no “one size fits all”
branch algorithm.

n Alt approach: keep a history (1 bit) on each branch
instruction and see if it was last taken or not.

n Implementation: branch prediction buffer or branch
history table.
n Index based on lower part of branch address
n Single bit indicates if branch at address was last taken or

not. (1 or 0)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Problem with 1-bit Branch Predictors
n Consider a loop branch

n Suppose it occurs 9 times in a row, then is
not taken.

n What’s the branch prediction accuracy?
n ANSWER: 1-bit predictor will mispredict

the entry and exit points of the loop.
n Yields only an 80% accuracy when there is

potential for 90% (i.e., you have to guess
wrong on the exit of the loop).

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Solution: 2-bit Branch Predictor

Must be wrong twice before changing prediction
Learns if the branch is more biased towards
“taken” or “not taken”

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Performance: Single vs Multicycle vs. PL

n Assume: 200 ps for memory access, 100 ps for
ALU ops, 50 ps for register access

n Single-cycle clock cycle:
n 600 ps: 200 + 50 + 100 + 200 + 50

n Futher assume instruction mix
n 25% loads, 10% stores, 11% branches, 2% jumps, 52%

ALU instructions
n Assume CPI for multi-cycle is 3.50
n Multicycle clock cycle: must be longest unit which is

200 ps
n Total time for an “avg” instruction is 3.5 * 200 ps =

700ps

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipeline performance (cont)
n For pipelined design…

n Loads take 1 cycle when no load-use dependence
and 2 cycles when there is yielding an average of
1.5 cycles per load.

n Stores and ALU instructions take 1 cycle.
n Branches take 1 cycle when predicted correctly and

2 cycles when not. Assume 75% accuracy, average
branch cycles is 1.25.

n Jumps are 2 cycles.
n Avg CPI then is:

1.5 x 25% + 1 x 10% + 1 x 52% + 1.25 x 11% + 2 x 2% = 1.17
n Longest stage is 200 ps, so 200 x 1.17 = 234

ps

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Even more performance…

n Ultimately we want greater and greater
Instruction Level Parallelism (ILP)

n How?
n Multiple instruction issue.

n Results in CPI’s less than one.
n Here, instructions are grouped into “issue slots”.
n So, we usually talk about IPC (instructions per

cycle)
n Static: uses the compiler to assist with grouping

instructions and hazard resolution. Compiler
MUST remove ALL hazards.

n Dynamic: (i.e., superscalar) hardware creates the
instruction schedule based on dynamically
detected hazards

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Example Static 2-issue Datapath

Additions include:

•32 bits from intr. Mem

•Two read, 1 write ports
on reg file

•1 more ALU (top
handles address calc)

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Ex. 2-Issue Code Schedule

Loop: lw $t0, 0($s1) #t0=array element
addiu $t0, $t0, $s2 #add scalar in $s2
sw $t0, 0($s1) #store result
addi $s1, $s1, -4 # dec pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/Branch Data Xfer Inst. Cycles
Loop: lw $t0, 0($s1) 1

addi $s1, $s1, -4 2
addu $t0, $t0, $s2 3
bne $s1, $zero, Loop sw $t0, 4($s1) 4

It take 4 clock cycles for 5 instructions or IPC of 1.25

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

More Performance: Loop Unrolling
n Technique where multiple copies of the loop body are

made.
n Make more ILP available by removing dependencies.
n How? Complier introduces additional registers via

“register renaming”.
n This removes “name” or “anti” dependence

n where an instruction order is purely a consequence of the
reuse of a register and not a real data dependence.

n Ex. lw $t0, 0($s1), addu $t0, $t0, $s2 and sw $t0, 4($s1)
n No data values flow between one pair and the next pair
n Let’s assume we unroll a block of 4 interations of the loop..

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Loop Unrolling Schedule
ALU/Branch
Instructions

Data Xfer Cycles

Loop addi $s1, $s1, -16 lw $t0, 0($s1) 1
lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3
addu $t1, $t1, $s2 lw $t3, 4($s1) 4
addu $t2, $t2, $s2 sw $t0, 16($s1) 5
addu $t3, $t3, $s2 sw $t1, 12($s1) 6

sw $t2, 8($s1) 7
bne $s1, $zero, loop sw $t3, 4($s1) 8

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Performance of Instruction Schedule

n 12 of 14 instructions execute in a pair.
n Takes 8 clock cycles for 4 loop

iterations
n Yields 2 clock cycles per iteration
n CPI = 8/14 è 0.57
n Cost of improvement: 4 temp regs + lots

of additional code

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Dynamic Scheduled Pipeline

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Intel P4 Dynamic Pipeline

CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Summary of Pipeline Technology
We’ve

exhausted
this!!

