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Datapath
n The datapath is the interconnection of 

the components that make up the 
processor.

n The datapath must provide connections 
for moving bits between memory, 
registers and the ALU.
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Control
n The control is a collection of signals 

that enable/disable the inputs/outputs 
of the various components.

n You can think of the control as the 
brain, and the datapath as the body. 
n the datapath does only what the brain tells 

it to do. 
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Processor Design

The sequencing and execution of 
instructions

n We already know about many of the 
individual components that are necessary:
n ALU, Multiplexors, Decoders, Flip-Flops

n We need to discuss how to use a clock

n We need to think about registers and 
memory.
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The Clock
The clock generates a never-ending 

sequence of alternating 1s and 0s.

All operations are synchronized to the 
clock.
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Clocking Methodology
n Determines when (relative to the clock) 

a signal can be read and written.
n Read: signal value is used by some 

component.
n Written: a signal value is generated by 

some component.
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Simple Example: Enabled AND
n We want an AND gate that holds it’s 

output value constant until the clock 
switches from 0 (lo) to 1 (hi).

n We can use a flip-flop to hold the inputs 
to the AND gate constant during the 
time we want the output constant.

n We use a clocked flip-flop to make 
things happen when the clock changes.
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D Flip-Flop Reminder
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The output (Q) changes to reflect D only 
when the Clock is a 1.
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Clocked AND gate
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Edge-triggered Clocking
n Values stored are updated (can change) 

only on a clock edge.
n When the clock switches from 0 to 1 

everybody allows signals in.
n everybody means state elements
n combinational elements always do the same 

thing, they don’t care about the clock (that’s 
why we added the flip-flops to our AND gate).
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State Elements
n Any component that stores one or more 

values is a state element.
n The entire processor can be viewed as a 

circuit that moves from one state 
(collection of all the state elements) to 
another state.

n At time i a component uses values 
generated at time i-1.  
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Register File
Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

Contains multiple registers
•each holds 32 bits

•Two output ports (read ports)

•One input port (write port)

•To change the value of a register:
•supply register number
•supply data
•clock (the Write control signal)
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Implementation of Read Ports

Figure B.19

M
u
x

Register 0

Register 1

Register n – 1

Register n

M
u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2



CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Implementation of Write
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Memory
n Memory is similar to a very large register file:

n single read port (output)
n chip select input signal
n output enable input signal
n write enable input signal
n address lines (determine which memory element)
n data input lines (used to write a memory element)
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Memory Usage
n For now, we treat memory as a single 

component that supports 2 operations:
n write (we change the value stored in a 

memory location)
n read (we get the value currently stored in a 

memory location).
n We can only do one operation at a time!
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Instruction & Data Memory
n It is useful to treat the memory that 

holds instructions as a separate 
component.
n instruction memory is read-only

n Typically there is really one memory 
that holds both instructions and data.
n as we will see when we talk more about 

memory, the processor often has two 
interfaces to the memory, one for 
instructions and one for data!
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Designing a Datapath for MIPS
n We start by looking at the datapaths 

needed to support a simple subset of 
MIPS instructions:
n a few arithmetic and logical instructions
n load and store word
n beq and j instructions
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Functions for MIPS Instructions

n We can generalize the functions we 
need to:
n using the PC register as the address, read a 

value from the memory (read the 
instruction)

n Read one or two register values (depends on 
the specific instruction).

n ALU Operation , Memory read or write, …
n Possibly change the value of a register.
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Fetching the next instruction
n PC Register holds the address
n Memory holds the instruction

n we need to read from memory.
n Need to update the PC

n add 4 to current value
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Instruction Fetch DataPath
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Instruction
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Supporting R-format instructions

Includes add, sub, slt, and & or
instructions.

Generalization: 
n read 2 registers and send to ALU.
n perform ALU operation
n store result in a register

rsop rt rd shamt funct

6 bits5 bits6 bits 5 bits 5 bits 5 bits
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MIPS Registers
n MIPS has 32 general purpose registers.
n Register File holds all 32 registers

n need 5 bits to select a register
n rs, rt & rd fields in R-format instructions.

n MIPS Register File has 2 read ports. 
n can get at both source registers at the 

same time.
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Datapath for R-format Instructions
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Zero
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Load and Store Instructions
Need to compute the address

n offset (part of the 
instruction)

n base (stored in a register).
For Load:

n read from memory
n store in a register

For Store:
n read from register
n write to memory
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Computing the address
n 16 bit signed offset is part of the 

instruction.
n We have a 32 bit ALU.

n need to sign extend the offset (to 32 bits).
n Feed the 32 bit offset and the contents 

of a register to the ALU
n Tell the ALU to “add”.



CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Load/Store Datapath
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Supporting beq
n 2 registers compared for equality

n 16 bit offset used to compute target 
address.
n signed offset is relative to the PC
n offset is in words not in bytes!

n Might branch, might not (need to 
decide).
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Computing target address
n Recall that the offset is actually 

relative to the address of the next 
instruction.
n we always add 4 to the PC, we must make 

sure we use this value as the base.
n Word vs. Byte offset

n we just need to shift the 16 bit offset 2 
bits to the right (fill with 2 zeros).
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Control & DataPath

Ref: Chapter 4



CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Datapath
n The datapath is the interconnection of 

the components that make up the 
processor.

n The datapath must provide connections 
for moving bits between memory, 
registers and the ALU.
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Control
n The control is a collection of signals 

that enable/disable the inputs/outputs 
of the various components.

n You can think of the control as the 
brain, and the datapath as the body. 
n the datapath does only what the brain tells 

it to do. 
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Datapaths

We looked at individual datapaths that 
support:

1. Fetching Instructions
2. Arithmetic/Logical Instructions
3. Load & Store Instructions
4. Conditional branch

We need to combine these in to a 
single datapath.
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Issues
n When designing one datapath that can 

be used for any operation:
n the goal is to be able to handle one 

instruction per cycle.
n must make sure no datapath resource needs 

to be used more than once at the same 
time.

n if so – we need to provide more than one!
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Sharing Resources
n We can share datapath resources by 

adding a multiplexor (and a control line).
n for example, the second input to the ALU 

could come from either:
n a register (as in an arithmetic instruction)
n from the instruction (as in a load/store – when 

computing the memory address). 
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Sharing with a Multiplexor Example

Control

ADD

Operand 1

B Operand 2
C

A
A+B (Control==0)

A+C (Control==1)
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Combining Datapaths for memory 
instructions and arithmetic instructions

n Need to share the ALU
n For memory instructions used to compute 

the address in memory.
n For Arithmetic/Logical instructions used to 

perform arithmetic/logical operation.
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Adding the Instruction Fetch
n One memory for instructions, separate 

memory for data.
n otherwise we might need to use the memory 

twice in the same instruction.
n Dedicated Adder for updating the PC

n otherwise we might need to use the ALU 
twice in the same instruction.
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Need to add datapath for beq
n Register comparison (requires ALU).

n Another adder to compute target 
address.
n One input to adder is sign extended offset, 

shifted by 2 bits.
n Other input to adder is PC+4
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Whew!

n Keep in mind that the datapath we 
now have supports just a few MIPS 
instructions!

n Things get worse (more complex) as 
we support other instructions:

j jal jr addi

n We won’t worry about them now…
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Control Unit
n We need something that can generate 

the controls in the datapath.
n Depending on what kind of instruction 

we are executing, different controls 
should be turned on (asserted) and off 
(deasserted).

n We need to treat each control 
individually (as a separate boolean 
function).
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Controls
n Our datapath includes a bunch of 

controls:
n ALU operation (3 bits)
n RegWrite
n ALUSrc
n MemWrite
n MemtoReg
n MemRead
n PCSrc
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ALU Operation Control
n A 3 bit control (assumes the ALU 

designed in chapter 4):

ALU Control Input Operation
000 AND
001 OR
010 add
110 subtract
111 slt
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ALU Functions for other instructions
lw , sw (load/store): addition

beq: subtraction

add, sub, and, or, slt
(arithmetic/logical): All R-format 
instructions
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R-Format Instructions

rsop rt rd shamt funct

6 bits5 bits6 bits 5 bits 5 bits 5 bits

Operation is specified by some bits in the 
funct field in the instruction.
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MIPS Instruction OPCODEs

n The MS 6 bits are an OPCODE that 
identifies the instruction.

n R-Format: always 000000 
n (funct identifies the operation)

lw       sw beq
100011   101011   000100

varies depending on instructionop

6 bits
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Generating ALU Controls

We can view the 3 bit ALU control as 3 
boolean functions. Inputs are:
n the op field (OPCODE) 
n funct field (for R-format instructions 

only)
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Simplifying The Opcode
For building the ALU Operation Controls, 

we  are interested in only 4 different 
opcodes.

We can simplify things by first reducing 
the 6 bit op field to a 2 bit value we will 
call ALUOp
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Instruction ALUOp funct ALU action ALU 
controls

lw 00 ?????? add 010

sw 00 ?????? add 010

beq 01 ?????? subtract 110

add 10 100000 add 010

sub 10 100010 subtract 110

and 10 100100 and 000

or 10 100101 or 001

slt 10 101010 slt 111
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Build a Truth Table
n We can now build a truth table for the 3 

bit ALU control.
n Inputs are:

n 2 bit ALUOp
n 6 bit funct field

n Abbreviated Truth Table: only show the 
rows we care about!
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ALUOp funct ALU 
Control

0 0 x x x x x x 010
x 1 x x x x x x 110
1 x x x 0 0 0 0 010
1 x x x 0 0 1 0 110
1 x x x 0 1 0 0 000
1 x x x 0 1 0 1 001
1 x x x 1 0 1 0 111

x means “don’t care”
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Adding the ALU Control
n We can now add the ALU control to the 

datapath:
n inputs to this control come from the 

instruction and from ALUOp
n If we try to show all the details the 

picture becomes too complex:
n just plop in an “ALU Control” box.
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Implementing Other Controls
n The other controls in out datapath must 

also be specified as functions.
n We need to determine the inputs to all 

the functions.
n primarily the inputs are part of the 

instructions, but there are exceptions.
n Need  to define precisely what 

conditions should turn on each control.
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RegDst Control Line

n Controls a multiplexor that selects on 
of the fields rt or rd from an R-
format or  I-format instruction.

n I-Format is used for load and store.
n sw needs to write to the register rt.

rsop rt rd shamt funct

rsop rt address

R-format
I-format
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RegDst usage
n RegDst should be

n 0 to send rt to the write register # input.
n 1 to send rd to the write register # input.

n RegDst is a function of the opcode 
field:
n If instruction is sw, RegDst should be 0
n For all other instructions RegDst should be 
1
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RegWrite Control
n a 1 tells the register file to write a 

register.
n whatever register is specified by the write 

register # input is written with the data on 
the write register data inputs.

n Should be a 1 for arithmetic/logical 
instructions and for a store.

n Should be a 0 for load or beq.
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ALUSrc Control

n MUX that selects the source for the 
second ALU operand.
n 1 means select the second register file 

output (read data 2).
n 0 means select the sign-extended 16 bit 

offset (part of the instruction).
n Should be a 1 for load and store.
n Should be a 0 for everything else.
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MemRead Control

• A 1 tells the memory to put the contents of the 
memory location (specified by the address 
lines) on the Read data output.

• Should be a 1 for load.
• Should be a 0 for everything else.
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MemWrite Control

• 1 means that memory location (specified by 
memory address lines) should get the value 
specified on the memory Write Data input.

• Should be a 1 for store.
• Should be a 0 for everything else.
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MemToReg Control

• MUX that selects the value to be stored in a 
register (that goes to register write data input).
– 1 means select the value coming from the memory 

data output.
– 0 means select value coming from the ALU output.

• Should be a 1 for load and any 
arithmetic/logical instructions.

• Should be a 0 for everything else (sw, beq).



CSCI-2500 SPRING 2016, Processor Design, Chapter 4

PCSrc Control

• MUX that selects the source for the value 
written in to the PC register.
– 1 means select the output of the Adder used to 

compute the relative address for a branch.
– 0 means select the output of the PC+4 adder.

• Should be a 1 for beq if registers are equal!
• Should be a 0 for other instructions or if 

registers are different.



CSCI-2500 SPRING 2016, Processor Design, Chapter 4

PCSrc depends on result of ALU operation!

n This control line can’t be simply a 
function of the instruction (all the 
others can).

n PCSrc should be a 1 only when:
n beq AND ALU zero output is a 1

n We will generate a signal called “branch” 
that we can AND with the ALU zero 
output.
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Truth Table for Control
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1 0 0 1 0 0 0 10

lw 0 1 1 1 1 0 0 00

sw x 1 x 0 0 1 0 00

beq x 0 x 0 0 0 1 01
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Single Cycle Instructions
n View the entire datapath as a 

combinational circuit.
n We can follow the flow of an instruction 

through the datapath.
n single cycle instruction means that there 

are not really any steps – everything just 
happens and becomes finalized when the 
clock cycle is over.
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add $t1,$t2,$t3
n Control Lines:

n ALU Controls specify an ALU add operation.
n RegWrite will be a 1 so that when the clock 

cycle ends the value on the Register Write 
Input lines will be written to a register.

n all other control lines are 0.
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lw $t1,offset($t2)

n Control Lines:
n ALU Control set for an add operation.
n ALUSrc is set to 1 to indicate the second 

operand is sign extended offset.
n MemRead would be a 1.
n RegDst would select the correct bits from 

the instruction to specify the dest. 
register.

n RegWrite would be a 1.
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Disadvantage of single cycle operation

If we have instructions execute in a single 
cycle, then the cycle time must be long 
enough for the slowest instruction.
n all instructions take the same time as the 

slowest.
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Multicycle Implementation
n Chop up the processing of instructions in 

to discrete stages.
n Each stage takes one clock cycle.

n we can implement each stage as a big 
combinational circuit (like we just did for 
the whole thing).

n provide some way to sequence through the 
stages.
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Advantages of Multicycle
n Only need those stages required by an 

instruction.
n the control unit is more complex, but 

instructions only take as long as necessary.
n We can share components 

n perhaps 2 different stages can use the 
same ALU.

n We don’t need to duplicate resources.
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Additional Resources for Multicycle

n To implement a multicycle 
implementation we need some additional 
registers that can be used to hold 
intermediate values.
n instruction
n computed address
n result of ALU operation
n …



CSCI-2500 SPRING 2016, Processor Design, Chapter 4

PC

Memory

Address

Instruct ion
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU
Memory

data
register

A

B

ALUOut

Multicycle Datapath
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Multicycle Datapath for MIPS
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MC DP with Control
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Instruction Stages
n Instruction Fetch
n Instruction decode/register fetch
n ALU operation/address computation
n Memory Access
n Register Write
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Complete Multicyle Datapath & Control 
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Instruction Fetch/Decode (IF/ID) 
State Machine
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Memory Reference State Machine
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R-type Instruction State Machine
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Branch/Jump State Machine
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Put it all together!
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Control for Multicycle
n Need to define the controls
n Need to come up with some way to 

sequence the controls
n Two techniques

n finite state machine
n microprogramming
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Finite State Machine
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MicroProgramming (sec. 5.7)
n The idea is to build a (very small) 

processor to generate the controls 
signals at the right time.

n At each stage (cycle) one 
microinstruction is executed – the 
result changes the value of the control 
signals.

n Somebody writes the microinstructions
that make up each MIPS instruction.
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Example microinstructions
Fetch next instruction: 

n turn on instruction memory read
n feed PC to memory address input
n write memory data output in to a holding 

register.

Compute Address:
n route contents of base register to ALU
n route sign-extended offset to ALU
n perform ALU add
n write ALU output in to a holding register. 

Control Signals

microinstruction
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Sequencing
n In addition to setting some control 

signals, each microinstruction must 
specify the next microinstruction that 
should be executed.

n 3 Options:
n execute next microinstruction (default)
n start next MIPS instruction (Fetch)
n Dispatch (depends on control unit inputs).
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Microinstruction Format
n A bunch of bits – one for each control 

line needed by the control unit.
n bits specify the values of the control lines 

directly.
n Some bits that are used to determine 

the next microinstruction executed.
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Dispatch Sequencing
n Can be implemented as a table lookup. 

n bits in the microinstruction tell what row in 
the table.

n inputs to the control unit tell what column.
n value stored in table determines the 

microaddress of the next microinstruction.
n This is a simplified description (called a 

microdescription)
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Exceptions & Interrupts
n Hardest part of control is implementing 

exceptions and interrupts – i.e., events that 
change the normal flow of instruction 
execution.

n MIPS convention
n Exception refers to any unexpected change in 

control flow w/o knowing if the cause is internal or 
external.

n Interrupts refer to only events who are externally 
caused.

n Ex. Interrupts: I/O device request (ignore for 
now)

n Ex. Exceptions: undefined instruction, arithmetic 
overflow
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Handling Exceptions
n Let’s implemented exceptions for handling

n Undefined instruction
n Overflow

n Basic actions
n Save the offending instruction address in the Exception Program 

Counter (EPC).
n Transfer control to the OS at some specified address
n Once exception is handled by OS, then either terminate the 

program or continue on using the EPC to determine where to restart.
n OS actions are determined based on what caused the exception.

n So, OS needs a Cause register which determines which path w/i the 
exception 

n Alternative implementation – Vectored Interrupts – where each 
cause of an exception or interrupt is given a specific OS address to 
jump to.

n We’ll use the first method.
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Extending the Multicycle D&C
n What datapath elements to add?

n EPC: a 32-bit register used to hold the address of 
the affected instruction.

n Cause: A 32-bit register used to record the cause 
of the exception. (undef instruction = 0 and 
overflow = 1). 

n What control lines to add?
n EPCWrite and Cause write control signals to allow 

regs to be written.
n IntCause (1-bit) control signal to set the low-order 

bit of the cause register to the appropriate value.
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Revised Datapath & Control
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Final FSM w/ exception handling



Pipelining
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Multicycle Instructions
n Chop each instruction in to stages.
n Each stage takes one cycle.
n We need to provide some way to 

sequence through the stages:
n microinstructions

n Stages can share resources (ALU, 
Memory).
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Pipelining
n We can overlap the execution of 

multiple instructions.
n At any time, there are multiple 

instructions being executed – each in a 
different stage.

n So much for sharing resources ?!?
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The Laundry Analogy
Non-pipelined approach:

1. run 1 load of clothes through washer
2. run load through dryer
3. fold the clothes (optional step for 

students)
4. put the clothes away (also optional).

Two loads? Start all over.
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Pipelined Laundry
n While the first load is drying, put the second 

load in the washing machine.
n When the first load is being folded and the 

second load is in the dryer, put the third load 
in the washing machine.

n Admittedly unrealistic scenario for CS 
students, as most only own 1 load of clothes…
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Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order
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Laundry Performance
n For 4 loads:

n non-pipelined approach takes 16 units of 
time.

n pipelined approach takes 7 units of time.

n For 816 loads:
n non-pipelined approach takes 3264 units of 

time.
n pipelined approach takes 819 units of time.
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Execution Time vs. Throughput
n It still takes the same amount of time 

to get your favorite pair of socks clean, 
pipelining won’t help.

n However, the total time spent away 
from CompOrg homework is reduced. 

It's the classic “Socks vs. CompOrg” 
issue.
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Instruction Pipelining
First we need to break instruction 

execution into discrete stages:
1. Instruction Fetch
2. Instruction Decode/ Register Fetch
3. ALU Operation
4. Data Memory access
5. Write result into register
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Operation Timings
n Some estimated timings for each of 

the stages:

Instruction Fetch 200 ps

Register Read 100 ps

ALU Operation 200 ps

Data Memory 200 ps

Register Write 100 ps
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Comparison
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I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

800 p s
I n s t r u c t i o n

f e t c h

800 p s

T i m e

l w $ 1 , 1 0 0 ( $ 0 )

l w $ 2 , 2 0 0 ( $ 0 )
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2 4 6 8 1 0 1 2 1 4

. . .
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RISC and Pipelining
n One of the major advantages of RISC 

instruction sets is the relative simplicity of 
a pipeline implementation.
n It’s much more complex in a CISC processor!!

n RISC (MIPS) design features that make 
pipelining easy include:
n single length instruction (always 1 word)
n relatively few instruction formats
n load/store instruction set
n operands must be aligned in memory (a single 

data transfer instruction requires a single 
memory operation).
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Pipeline Hazard
n Something happens that means the next 

instruction cannot execute in the 
following clock cycle.

n Three kinds of hazards:
n structural hazard
n control hazard
n data hazard
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Structural Hazards
n Two stages require the same resource. 

n What if we only had enough electricity to 
run either the washer or the dryer at any 
given time?

n What if MIPS datapath had only one 
memory unit instead of separate instruction 
and data memory?
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Avoiding Structural Hazards
n Design the pipeline carefully.
n Might need to duplicate resources

n an Adder to update PC, and ALU to perform 
other operations.

n Detecting structural hazards at 
execution time (and delaying execution) 
is not something we want to do 
(structural hazards are minimized in the 
design phase).
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Control Hazards
n When one instruction needs to make a 

decision based on the results of another 
instruction that has not yet finished.

n Example: conditional branch
n The instruction that is fed to the pipeline 

right after a beq depends on whether or 
not the branch is taken.
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beq Control Hazard

slt $t0,$s0,$s1
beq $t0,$zero,skip
addi $s0,$s0,1

skip:
lw $s3,0($t3)

slt

beq

???

The instruction to follow the beq could be either the 
addi or the lw, it depends on the result of the beq
instruction.

a = b+c;
if (x!=0)

y++;
...
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One possible solution - stall
n We can include in the control unit the 

ability to stall (to keep new instructions 
from entering the pipeline until we know 
which one).

n Unfortunately conditional branches are 
very common operations, and this would 
slow things down considerably.
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A Stall

I n s t r u c t i o n

f e t c h
R e g A L U

D a t a

a c c e s s
R e g

T i m e

b e q $ 1 , $ 2 , 4 0
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R e g A L U
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R e g

2 n s
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f e t c h
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R e g

2 n s

2 4 6 8 1 0 1 2 1 4 1 6

P r o g r a m

e x e c u t i o n

o r d e r

( i n i n s t r u c t i o n s )

To achieve a 1 cycle stall (as shown above), we need 
to modify the implementation of the beq instruction 
so that the decision is made by the end of the second 
stage.
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Another strategy

n Predict whether or not the branch 
will be taken.

n Go ahead with the predicted
instruction (feed it into the pipeline 
next).

n If your prediction is right, you don't 
lose any time.

n If your prediction is wrong, you need 
to undo some things and start the 
correct instruction
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Predicting branch not taken

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch Reg ALU Data

access Reg
2 ns

Instruction
fetch Reg ALU Data

access Reg
2 ns

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5 ,$6

or $7, $8, $9

Instruction
fetch Reg ALU Data

access Reg

2 4 6 8 10 12 14

2 4 6 8 10 12 14

Instruction
fetch Reg ALU Data

access Reg

2 ns

4 ns

bubble bubble bubble bubble bubble

Program
execution
order
(in instructions)
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Dynamic Branch Prediction
n The idea is to build hardware that will 

come up with a prediction based on the 
past history of the specific branch 
instruction.

n Predict the branch will be taken if it has 
been taken more often than not in the 
recent past.
n This works great for loops! (90% + correct).
n We’ll talk more about this …
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Yet another strategy: delayed branch

n The compiler rearranges instructions so 
that the branch actually occurs delayed 
by one instruction from where its 
execution starts

n This gives the hardware time to 
compute the address of the next 
instruction.

n The new instruction is hopefully useful 
whether or not the branch is taken (this 
is tricky - compilers must be careful!).
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Delayed Branch

add $s2,$s3,$s4
beq $t0,$zero,skip
addi $s0,$s0,1

skip:
lw $s3,0($t3)

beq

add

Order reversed!

The compiler must generate code that differs 
from what you would expect.

a = b+c;
if (x!=0)

y++;
...
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Data Hazard
n One of the values needed by an 

instruction is not yet available (the 
instruction that computes it isn't done 
yet).

n This will cause a data hazard:
add $t0,$s1,$s2
addi $t0,$t0,17
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IF Reg ALU Data
Access Reg

IF Reg ALU Data
Access Reg

add $t0,$s1,$s2

addi $t0,$t0,17

selects $s1 and $s2 for ALU op

adds $s1 and $s2

stores sum in $t0

selects $t0 for ALU op
time
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Handling Data Hazards

n We can hope that the compiler can 
arrange instructions so that data 
hazards never appear.
n this doesn't work, as programs generally 

need to use previously computed values 
for everything!

n Some data hazards aren't real - the 
value needed is available, just not in 
the right place.
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IF Reg ALU Data
Access Reg

IF Reg ALU Data
Access Reg

add $t0,$s1,$s2

addi $t0,$t0,17

ALU has finished computing sum

ALU needs sum from the previous ALU operation
time

The sum is available when needed!
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Forwarding
n It's possible to forward the value 

directly from one resource to another 
(in time).

n Hardware needs to detect (and handle) 
these situations automatically!
n This is difficult, but necessary.
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add $s0, $t0, $t1

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBEX

IF ID MEMEX

Time
2 4 6 8 10

MEM

WBMEM

Picture of Forwarding 
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Another Example

Ti m e
2 4 6 8 1 0 1 2 1 4

l w $ s0, 2 0( $t1 )

su b $t2 , $ s0 , $ t3

Prog ra m
exe c utio n
ord er
(in in st ructio n s)

IF I D W BM E ME X

I F I D W BM E ME X

bu b ble bu bble bu b ble bu b ble bu bble
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Pipelining and CPI
n If we keep the pipeline full, one 

instruction completes every cycle.
n Another way of saying this: the average 

time per instruction is 1 cycle.
n even though each instruction actually takes 

5 cycles (5 stage pipeline).

CPI=1
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Correctness
Pipeline and compiler designers must be 

careful to ensure that the various 
schemes to avoid stalling do not change 
what the program does!
n only when and how it does it.
n It's impossible to test all possible 

combinations of instructions (to make sure 
the hardware does what is expected).

n It's impossible to test all combinations even 
without pipelining!
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Pipelined Datapath
We need to use a multicycle datapath.

n includes registers that store the result of 
each stage (to pass on to the next stage).

n can't have a single resource used by more 
than one stage at time.
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lw and pipelined datapath
n We can trace the execution of a load 

word instruction through the datapath.

n We need to keep in mind that other 
instructions are using the stages not in 
use by our lw instruction!
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Stage 5: WriteBack (WB)
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A Bug!
n When the value read from memory is 

written back to the register file, the 
inputs to the register file (write 
register #) are from a different 
instruction!

n To fix the bug we need to save the part 
of the lw instruction (5 bits of it 
specify which register should get the 
value from memory).
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New Datapath
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Store Word (sw) Data Path Flow (EX)
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SW Data 
Path (cont.)
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Final Corrected Datapath
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Ex. With 5 instructions
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Ex: Alt View



Pipeline Control
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Pipelined DP w/ signals
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Control lines for pipeline stages



CSCI-2500 SPRING 2016, Processor Design, Chapter 4

Pipelined DP w/ Control
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Pipelined Dependencies
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Pipeline w/ Forwarding Values
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ALU & Regs: B4, After Fwding
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Datapath w/ forwarding
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Forwarding Control Table

ForwardA = 00 ID/EX 1st ALU op 
from reg file

ForwardA= 10 EX/MEM 1st ALU op fwd 
from prior ALU 
result

ForwardA = 01 MEM/WB 1st ALU op fwd 
from data mem 
or earlier 
result

MUX Control Source Reason
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Forwarding Control Table (cont.)

ForwardB = 00 ID/EX 2nd ALU op 
from reg file

ForwardB= 10 EX/MEM 2nd ALU op fwd 
from prior ALU 
result

ForwardB = 01 MEM/WB 2nd ALU op fwd 
from data mem 
or earlier result

MUX Control Source Reason
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EX Stage Hazard Detection and 
Resolution

n if( EX/MEM.RegWrite && 
EX/MEM.RegisterRd != 0 && 
EX/MEM.RegisterRd == 
ID/EX.RegisterRs )

ForwardA = 10
n if( EX/MEM.RegWrite && 

EX/MEM.RegisterRd != 0 && 
EX/MEM.RegisterRd == 
ID/EX.RegisterRt )

ForwardB = 10 
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Mem Stage Hazard Detection & Resolution

n if( MEM/WB.RegWrite && 
MEM/WB.RegisterRd != 0 && 
EX/MEM.RegisterRd != ID/EX.RegisterRs && 
MEM/WB.RegisterRd = ID/EX.RegisterRs) 
ForwardA = 01

n if( MEM/WB.RegWrite && 
MEM/WB.RegisterRd != 0 && 
EX/MEM.RegisterRd != ID/EX.RegisterRt && 
MEM/WB.RegisterRd = ID/EX.RegisterRt) 
ForwardB = 01
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Data Hazards & Stalls
n Need Hazard detection unit in addition 

to forwarding unit.
n Check for Load Instructions based on…

n if( ID/EX.MemRead && 
(ID/EX.RegisterRt==IF/ID.RegisterRs || 
ID/EX.RegisterRt==IF/ID.RegisterRt)) 
StallThePipeline 
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Where Forwarding Fails…must stall
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How Stalls Are Inserted
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Pipelined control w/ fwding & hazard detection
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What about those crazy branches?

Problem: if the branch is 
taken, PC goes to addr 
72, but don’t know until 
after 3 other instructions 
are processed
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Branch Hazards: Assume Branch Not Taken

n Recall stalling until branch is complete is too 
ssssssllllooooowwww!!

n So, assume the branch is not taken…
n If taken, instructions fetched/decoded must be 

discarded or “squashed”
n discard instructions, just change the original control 

values to 0’s (similar to load-use hazard), 
n BIG DIFFERENCE: must flush the pipeline in the IF, ID 

and EX stages
n How can we reduce the “flush” costs when a branch is 

taken?
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Reducing the Delay of Branches
n Let’s move the branch execution earlier 

in the pipeline.
n EFFECT: fewer instructions need to be 

flushed.
n NEED two actions:

n Compute branch target address (EASY –
can do on IF/ID stage).

n Eval of branch decision (HARD)
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Faster Branch Decision
n Recall, for BEQ instruction, we would 

compare two regs during the ID stage 
and test for equality.

n Equality can be tested by XORing the 
two regs. (a.k.a. equality unit)

n Need additional ID stage forwarding 
and hazard detection hardware

n This has 2 complicating factors…
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Faster Branch Decison: Complex Factors

1. In ID stage, now we need to decide whether 
a “bypass” path to the “equality” unit is 
needed. 

• ALU forwarding logic is not sufficient, and so we 
need new forwarding logic for the equality unit.

2. Can stall due to a data hazard. 
• if an r-type instruction comes before the branch 

who operands are used in the comparision in the 
branch, a stall is needed 
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Example Pipelined Branch

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12, $2, $5
48 or $13, $2, $6
52 and $14, $4, $2
56 slt $15, $6, $7 

……..
72 lw $4, 50($7)
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Branch 
Processing 
Example
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Dynamic Branch Prediction
n From the phase “There is no such thing as a typical 

program”, this implies that programs will branch is 
different ways and so there is no “one size fits all” 
branch algorithm.

n Alt approach: keep a history (1 bit) on each branch 
instruction and see if it was last taken or not.

n Implementation: branch prediction buffer or branch 
history table.
n Index based on lower part of branch address
n Single bit indicates if branch at address was last taken or 

not. (1 or 0)
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Problem with 1-bit Branch Predictors
n Consider a loop branch

n Suppose it occurs 9 times in a row, then is 
not taken.

n What’s the branch prediction accuracy?
n ANSWER: 1-bit predictor will mispredict 

the entry and exit points of the loop.
n Yields only an 80% accuracy when there is 

potential for 90% (i.e., you have to guess 
wrong on the exit of the loop).
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Solution: 2-bit Branch Predictor

Must be wrong twice before changing prediction
Learns if the branch is more biased towards 
“taken” or “not taken” 
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Performance: Single vs Multicycle vs. PL

n Assume: 200 ps for memory access, 100 ps for 
ALU ops, 50 ps for register access

n Single-cycle clock cycle:
n 600 ps: 200 + 50 + 100 + 200 + 50

n Futher assume instruction mix
n 25% loads, 10% stores, 11% branches, 2% jumps, 52% 

ALU instructions
n Assume CPI for multi-cycle is 3.50
n Multicycle clock cycle: must be longest unit which is 

200 ps
n Total time for an “avg” instruction is 3.5 * 200 ps = 

700ps
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Pipeline performance (cont)
n For pipelined design…

n Loads take 1 cycle when no load-use dependence 
and 2 cycles when there is yielding an average of 
1.5 cycles per load.

n Stores and ALU instructions take 1 cycle.
n Branches take 1 cycle when predicted correctly and 

2 cycles when not. Assume 75% accuracy,  average 
branch cycles is 1.25.

n Jumps are 2 cycles.
n Avg CPI then is:

1.5 x 25%  + 1 x 10% + 1 x 52% + 1.25 x 11% + 2 x 2% = 1.17
n Longest stage is 200 ps, so 200 x 1.17 = 234 

ps
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Even more performance…

n Ultimately we want greater and greater 
Instruction Level Parallelism (ILP)

n How?
n Multiple instruction issue.

n Results in CPI’s less than one.
n Here, instructions are grouped into “issue slots”.
n So, we usually talk about IPC (instructions per 

cycle)
n Static: uses the compiler to assist with grouping 

instructions and hazard resolution. Compiler 
MUST remove ALL hazards.

n Dynamic: (i.e., superscalar) hardware creates the 
instruction schedule based on dynamically 
detected hazards
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Example Static 2-issue Datapath

Additions include:

•32 bits from intr. Mem

•Two read, 1 write ports 
on reg file

•1 more ALU (top 
handles address calc)
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Ex. 2-Issue Code Schedule

Loop: lw $t0, 0($s1) #t0=array element
addiu $t0, $t0, $s2 #add scalar in $s2
sw $t0, 0($s1) #store result
addi $s1, $s1, -4 # dec pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/Branch Data Xfer Inst. Cycles
Loop: lw  $t0, 0($s1) 1

addi  $s1, $s1, -4 2
addu  $t0, $t0, $s2 3
bne    $s1, $zero, Loop sw  $t0, 4($s1) 4

It take 4 clock cycles for 5 instructions or IPC of 1.25
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More Performance: Loop Unrolling
n Technique where multiple copies of the loop body are 

made.
n Make more ILP available by removing dependencies.
n How? Complier introduces additional registers via 

“register renaming”.
n This removes “name” or “anti” dependence

n where an instruction order is purely a consequence of the 
reuse of  a register and not a real data dependence.

n Ex. lw $t0, 0($s1), addu $t0, $t0, $s2 and sw $t0, 4($s1)
n No data values flow between one pair and the next pair
n Let’s assume we unroll a block of 4 interations of the loop..
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Loop Unrolling Schedule
ALU/Branch 
Instructions

Data Xfer Cycles

Loop addi $s1, $s1, -16 lw $t0, 0($s1) 1
lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3
addu $t1, $t1, $s2 lw $t3, 4($s1) 4
addu $t2, $t2, $s2 sw $t0, 16($s1) 5
addu $t3, $t3, $s2 sw $t1, 12($s1) 6

sw $t2, 8($s1) 7
bne $s1, $zero, loop sw $t3, 4($s1) 8
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Performance of Instruction Schedule

n 12 of 14 instructions execute in a pair.
n Takes 8 clock cycles for 4 loop 

iterations
n Yields 2 clock cycles per iteration
n CPI = 8/14 è 0.57
n Cost of improvement: 4 temp regs + lots 

of additional code
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Dynamic Scheduled Pipeline
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Intel P4 Dynamic Pipeline
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Summary of Pipeline Technology
We’ve 

exhausted 
this!!


