
CSCI-2500:
Computer Organization

Memory Hierarchy (Chapter 5)

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 2

Memory Technologies: Speed vs. Cost (1997)

Technology Access Time Cost: $/Mbyte
SRAM 5-25ns $100-$250

DRAM 60-120ns $5-$10

Mag. disk 10-20 million ns $0.1-$0.2

Access Time: the length of time it takes to get a value
from memory, given an address.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 3

Memory Technologies: Speed vs. Cost (2004)

Technology Access Time Cost: $/Gbyte
SRAM 0.5-5ns $4000-$10K (25x)

DRAM 50-70ns $100-$200 (50x)

Mag. disk 5-20 million ns $0.50-$2.00 (12x)

Observe: access time not changing much over the last 7
years, but unit cost per capacity has changed dramatically

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 4

Performance and Memory
n SRAM is fast, but too expensive (we

want large memories!).

n Using only SRAM (enough of it) would
mean that the memory ends up costing
more than everything else combined!

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 5

Caching
n The idea is to use a small amount of fast

memory near the processor (in a cache).

n The cache hold frequently needed
memory locations.
n when an instruction references a memory

location, we want that value to be in the
cache!

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 6

Principles of Locality

Temporal: if a memory location is
referenced, it is likely that it will be
referenced again in the near future.

Spatial: if a memory location is referenced,
it is likely that nearby items will be
referenced in the near future.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 7

Programs and Locality
Programs tend to exhibit a great deal of

locality in memory accesses.
n array, structure/record access
n subroutines (instructions are near each

other)
n local variables (counters, pointers, etc) are

often referenced many times.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 8

Memory Hierarchy
The general idea is to build a hierarchy:

n at the top is a small, fast memory that is
close to the processor.

n in the middle are larger, slower memories.
n At the bottom is massive memory with very

slow access time.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 9

CPU

Level n

Level 2

Level 1

Levels in the
memory hierarchy

Increasing distance
from the CPU in
access time

Size of thememory at each level
Figure 7.3

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 10

Cache and Main Memory
n For now we will focus on a 2 level

hierarchy:
n cache (small, fast memory directly

connected to the processor).
n main memory (large, slow memory at level 2

in the hierarchy).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 11

Memory Hierarchy and Data Transfer

Processor

Data are transferred

Transfer of data is done
between adjacent levels in
the hierarchy only!

All access by the processor is
to the topmost level.

Figure 7.2

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 12

Terminology
n hit: when the memory location accessed

by the processor is in the cache (upper
level).

n miss: when the memory location
accessed by the process is not in the
cache.

n block: the minimum unit of information
transferred between the cache and the
main memory. Typically measured in
bytes or words.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 13

Terminology (cont.)
n hit rate: the ratio of hits to total

memory accesses.
n miss rate: 1 – hit rate
n hit time: the time to access an element

that is in the cache:
n time to find out if it’s in the cache.
n time to transfer from cache to processor.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 14

Terminology (cont.)
n miss penalty: the time to replace a block

in the cache with a block from main
memory and to deliver deliver the
element to the processor.

n hit time is small compared to miss
penalty (otherwise we wouldn’t bother
with a memory hierarchy!)

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 15

Simple Cache Model
n Assume that the processor accesses

memory one word at a time.
n A block consists of one word.
n When a word is referenced and is not in

the cache, it is put in the cache (copied
from main memory).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 16

Cache Usage
n At some point in time the cache holds

memory items X1,X2,…Xn-1

n The processor next accesses memory
item Xn which is not in the cache.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 17

Cache before and after

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 18

Issues
n How do we know if an item is in the

cache?

n If it is in the cache, how do we know
where it is?

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 19

Direct-Mapped Cache
n Each memory location is mapped to a

single location in the cache.
n there in only one place it can be!

n Remember that the cache is smaller
than memory, so many memory locations
will be mapped to the same location in
the cache.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 20

Mapping Function
n The simplest mapping is based on the LS

bits of the address.
n For example, all memory locations whose

address ends in 000 will be mapped to
the same location in the cache.

n The requires a cache size of 2n locations
(a power of 2).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 21

A Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Figure 7.5

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 22

Who’s in slot 000?
n We still need a way to find out which of

the many possible memory elements is
currently in a cache slot.
n slot: a location in the cache that can hold a

block.
n We need to store the address of the

item currently using cache slot 000.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 23

Tags
n We don’t need to store the entire

memory location address, just those
bits that are not used to determine the
slot number (the mapping).

n We call these bits the tag.

n The tag associated with a cache slot
tells who is currently using the slot.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 24

16 word memory, 4 word cache

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Data Tags

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 25

Initialization Problem
n Initially the cache is empty.

n all the bits in the cache (including the tags)
will have random values.

n After some number of accesses, some
of the tags are real and some are still
just random junk.

n How do we know which cache slots are
junk and which really mean something?

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 26

Valid Bits
n Include one more bit with each cache slot

that indicates whether the tag is valid or not.
n Provide hardware to initialize these bits to 0

(one bit per cache slot).
n When checking a cache slot for a specific

memory location, ignore the tag if the valid
bit is 0.

n Change a slot’s valid bit to a 1 when putting
something in the slot (from main memory).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 27

Revised Cache

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Data Tags

Valid

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 28

Simple Simulation
n We can simulate the operation of our

simple direct-mapped cache by listing a
sequence of memory locations that are
referenced.

n Assume the cache is initialized with all
the valid bits set to 0 (to indicate all
the slots are empty).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 29

Memory Access Sequence

Address Binary Address Slot hit or miss
3 0011 11 (3) miss
8 1000 00 (0) miss
3 0011 11 (3) hit
2 0010 10 (2) miss
4 0100 00 (0) miss
8 1000 00 (0) miss

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 30

Hardware
n We need to have hardware that can

perform all the operations:
n find the right slot given an address

(perform the mapping).
n check the valid bit.
n compare the tag to part of the address

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 31

Address (showing bit posi tions)

20 10

Byte
off set

V alid Tag Da taIndex
0
1
2

1021
1022
1023

Tag

Index

Hi t Data

20 32

31 30 13 12 11 2 1 0

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 32

Possible Test Question

Given the following:
n 32 bit addresses (232 byte memory, 230 words)
n 64 KB cache (16 K words). Each slots holds 1 word.
n Direct Mapped Cache.

n How many bits are needed for each tag?
n How many memory locations are mapped to the

same cache slot?
n How many total bits in the cache (data + tag +

valid).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 33

Possible Test Answer

n Memory has 230 words
n Cache has 16K = 214 slots (words).
n Each cache slot can hold any one of 230 ¸

214 = 216 memory locations, so the tag must
be 16 bits.

n 216 is 64K memory locations that map to
the same cache slot.

n Add one for the valid bit for each cache
line.

n Total memory in bits = 214 x (32+16+1) = 49
x 16K = 784 Kbits (98 Kbytes!)

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 34

Handling a Cache Miss
n A miss means the processor must wait

until the memory requested is in the
cache.
n a separate controller handles transferring

data between the cache and memory.
n In general the processor continuously

tries the fetch until it works (until it’s a
hit).
n continuously means “once per cycle”.
n in the meantime the pipeline is stalled!

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 35

Data vs. Instruction Cache
n Obviously nothing other than a stall can

happen if we get a miss when fetching
the next instruction!

n It is possible to execute other
instructions while waiting for data (need
to detect data hazards), this is called
stall on use.
n the pipeline stalls only when there are no

instructions that can execute without the
data.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 36

DecStation 3100 Cache
n Simple Cache implementation

n 64 KB cache (16K words).
n 16 bit tags
n Direct Mapped
n Two caches, one for instructions and the

other for data.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 37

A d d r e s s (s h o w i n g b i t p o s i t i o n s)

1 6 1 4 B y t e

o f f s e t

V a l i d T a g D a t a

H i t D a t a

1 6 3 2

1 6 K

e n t r i e s

1 6 b i t s 3 2 b i t s

3 1 3 0 1 7 1 6 1 5 5 4 3 2 1 0

DecStation 3100 cache

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 38

Handling Writes
n What happens when a store

instruction is executed?
n what if it’s a hit?
n what if it’s a miss?

n DecStation 3100 does the following:
n don’t bother checking the cache, just

write the new value in to the cache!
n Also write the word to main memory

(called write-through).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 39

Write-Through
n Always updating main memory on each store

instruction can slow things down!
n the memory is tied up for a while.

n It is possible to set up a write buffer that
holds a number of pending writes.

n If we also update the cache, it is not likely
that we need to worry about getting a memory
value from the buffer (but it’s possible!)

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 40

Write-back
n Another scheme for handling writes:

n only update the cache.
n when the memory location is booted out of

the cache (someone else is being put in to
the same slot), write the value to memory.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 41

Cache Performance

For the simple DecStation 3100 cache:

Miss Rate
Program Instruction Data Combined
gcc 6.1% 2.1% 5.4%

spice 1.2% 1.3% 1.2%

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 42

Spatial Locality?
n So far we’ve only dealt with temporal

locality (it we access an item, it is likely
we will access it again soon).

n What about space (the final frontier)?
n In general we make a block hold more than a

single word.
n Whenever we move data to the cache, we

also move it’s neighbors.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 43

Blocks and Slots
n Each cache slot holds one block.
n Given a fixed cache size (number of

bytes) as the block size increases, the
number of slots must decrease.

n Reducing the number of slots in the
cache increases the number of memory
locations that compete for the same
slot.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 44

Example multi-word block cache

n 4 words/block
n we now use a block address to determine

the slot mapping.
n the block address in this case is the

address/4.
n on a hit we need to extract a single word

(need a multiplexor controlled by the LS
2 address bits).

n 64KB data
n 16 Bytes/block
n 4K slots.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 45

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

Example multi-word block cache

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 46

Performance and Block Size

Block Miss Rate
Program Size Instruction Data Combined
gcc 1 6.1% 2.1% 5.4%
gcc 4 2.0% 1.7% 1.9%
spice 1 1.2% 1.3% 1.2%
spice 4 0.3% 0.6% 0.4%

DecStation 3100 cache with block sizes 1 and
4 (words).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 47

Is bigger always better?
n Eventually increasing the block size will

mean that the competition for cache
slots is too high
n miss rate will increase.

n Consider the extreme case: the entire
cache is a single block!

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 48

Miss rate vs. Block Size

1 KB
8 KB
16 KB
64 KB
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is
s
r a
t e

64164

Block size (bytes)

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 49

Block Size and Miss Time
n As the block size increases, we need to worry

about what happens to the miss time.
n The larger a block is, the longer it takes to

transfer from main memory to cache.

n It is possible to design memory systems with
transfer of an entire block at a time, but only
for relatively small block sizes (4 words).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 50

Example Timings
Hypothetical access times:

n 1 cycle to send the address
n 15 cycles to initiate each access
n 1 cycle to transfer each word.

n Miss penalty for 4-word wide memory is:
1 + 4x15 + 4x1 = 65 cycles.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 51

Memory Organization Options
CPU

Cache

Bus

Memory

a. One-word-wide
memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

Improving memory bandwidth….

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 52

Improving Cache Performance
n Cache performance is based on two

factors:
n miss rate

n depends on both the hardware and on the
program being measured (miss rate can vary).

n miss penalty
n the penalty is dictated by the hardware (the

organization of memory and memory access
times).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 53

Cache and CPU Performance
The total number of cycles it takes for a

program is the sum of:
n number of normal instruction execution

cycles.
n number of cycles stalled waiting for

memory.

penaltyMissrateMiss
ogramPr
AccessesMemorycyclesstallMemory ××=−

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 54

Cache Calculations
How much faster would this program run

with a perfect cache?:
CPI (without memory stalls): 2
Miss Rate: 5%
Miss Penalty: 40 cycles
% of instructions that are load/store: 30%

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 55

Speedup Calc
Timeperfect=IC * 2 (cpi) * cycle time

= IC * 2.0

Timecache=IC*(0.3*(2+0.05*40) + 0.7*2)
= IC * 2.6

Speedup: 2.6/2 = 1.3 times faster with a
perfect cache.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 56

Clock Rate and Cache Performance

n If we double the clock rate of the
processor, we don’t change:
n cache miss rate
n miss penalty (memory is not likely to

change!).

n The cache will not improve, so the
speedup is not close to double!

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 57

Reducing Miss Rate
n Obviously a larger cache will reduce the

miss rate!
n We can also reduce miss rate by

reducing the competition for cache
slots.
n allow a block to be placed in one of many

possible cache slots.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 58

An extreme example of how to mess up a direct
mapped cache.

n Assume that every 64th memory element
maps to the same cache slot.

for (i=0;i<10000;i++) {
a[i] = a[i] + a[i+64] + a[i+128];
a[i+64] = a[i+64] + a[i+128];

}

a[i], a[i+64] and a[i+128] use the same
cache slot!

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 59

Fully Associative Cache
n Instead of direct mapped, we allow any

memory block to be placed in any cache
slot.

n It’s harder to check for a hit (hit time
will increase).

n Requires lots more hardware (a
comparator for each cache slot).

n Each tag will be a complete block
address.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 60

Fully Associative Cache

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Data Tags

Valid

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 61

Tradeoffs
n Fully Associate is much more flexible, so

the miss rate will be lower.
n Direct Mapped requires less hardware

(cheaper).
n will also be faster! i.e. better hit time!

n Tradeoff of miss rate vs. hit time.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 62

Middle Ground
n We can also provide more flexibility without

going to a fully associative placement policy.
n For each memory location, provide a small

number of cache slots that can hold the
memory element.

n This is much more flexible than direct-
mapped, but requires less hardware than fully
associative.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 63

Set Associative
n A fixed number of locations where each

block can be placed.
n n-way set associative means there are n

places (slots) where each block can be
placed.

n Chop up the cache in to a number of
sets each set is of size n.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 64

Block Placement Options
(memory block address 12)

1
2

Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1
2

Tag

Data

Set # 0 1 2 3

Search

Set associative

1
2

Tag

Data

Search

Fully associative

Figure 7.15

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 65

Possible 8-block Cache designs

T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a ta T a g D a ta T a g D a ta T a g D a t a

E i g h t - w a y s e t a s s o c ia t iv e (fu l l y a s s o c i a t i v e)

T a g D a t a Ta g D a ta T a g D a ta T a g D a ta

F o u r - w a y s e t a s s o c ia t iv e

S e t

0

1

T a g D a t a

O n e - w a y s e t a s s o ci a t iv e

(d i r e c t m a p p e d)

B lo c k

0

7

1

2

3

4

5

6

T a g D a t a

T w o - w a y s e t a s s o ci a t iv e

S e t

0

1

2

3

T a g D a ta

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 66

Block Addresses & Set Associative Caching

n The LS bits of block address is used to
determine which set the block can be
placed in.

n The rest of the bits must be used for
the tag.

Tag Index Block Offset

block address

32 bit byte address

The index is the
set number

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 67

Possible Test Question
n Block Size: 4 words
n Cache size (data only): 64 K Bytes
n 8-way set associative (each set has 8 slots).
n 32 bit address space (bytes).

n How many sets are there in the cache?
n How many memory blocks compete for

placement in each set?

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 68

Answer
Cache size:

64 K Bytes is 216 bytes
216 bytes is 214 words
214 words is 211 sets of 8 blocks each

Memory Size:
232 bytes = 230 words = 228 blocks

blocks per set:
228/211 = 217 blocks per set

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 69

4-way Set Associative Cache
Address

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 70

4-way set associative and the
extreme example.

for (i=0;i<10000;i++) {
a[i] = a[i] + a[i+64] + a[i+128];
a[i+64] = a[i+64] + a[i+128];

}

a[i], a[i+64] and a[i+128] belong to the
same set – that’s OK, we can hold all 3 in
the cache at the same time.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 71

Performance Comparison
Miss Rate

Program Associativity Instructio
n

Data Combined

gcc 1 (direct) 2.0% 1.7% 1.9%
gcc 2 1.6% 1.4% 1.5%
gcc 4 1.6% 1.4% 1.5%
spice 1 (direct) 0.3% 0.6% 0.4%
spice 2 0.3% 0.6% 0.4%
spice 4 0.3% 0.6% 0.4%

DecStation 3100 cache with block size 4 words.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 72

A note about set associativity
n Direct mapped is really just 1-way set

associative (1 block per set).

n Fully associative is n-way set
associative, where n is the number of
blocks in the cache.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 73

Question
Cache size 4K blocks.
block size 4 words (16 bytes)
32 bit address
n How many bits for storing the tags (for the

entire cache), if the cache is:
n direct mapped
n 2-way set associative
n 4-way set associative
n fully associative

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 74

Answer

Direct Mapped:
16 * 4K = 64K bits

2-way:
17 * 4K = 68K bits

4-way:
18 * 4K = 72K bits

Fully Associative:
28 * 4K = 112K bits

tag index offset
16 12 4

tag index offset
17 11 4

tag index offset
18 10 4

tag offset
28 4

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 75

Block Replacement Policy
n With a direct mapped cache there is no

choice which memory element gets
removed from the cache when a new
element is moved to the cache.

n With a set associative cache, eventually
we will need to remove an element from
a set.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 76

Replacement Policy: LRU
LRU: Least recently used.

n keep track of how old each block is (the
blocks in the cache).

n When we need to put a new element in the
cache, use the slot occupied by the oldest
block.

n Every time a block in the cache is accessed
(a hit), set the age to 0.

n Increase the age of all blocks in a set
whenever a block in the set is accessed.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 77

LRU in hardware
n We must implement this strategy in

hardware!
n 2-way is easy, we need only 1 bit to keep

track of which element in the set is
older.

n 4-way is tougher (but possible).
n 8-way requires too much hardware

(typically LRU is only approximated).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 78

Multilevel Caches
n Most modern processors include an on-

chip cache (the cache is part of the
processor chip).

n The size of the on-chip cache is
restricted by the size of the chip!

n Often, a secondary cache is used
between the on-chip cache and the main
memory.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 79

Adding a secondary cache
n Typically use SRAM (fast, expensive).

Miss penalty is much lower than for main
memory.

n Using a fast secondary cache can change
the design of the primary cache:
n make the on-chip cache hit time as small as

possible!

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 80

Performance Analysis
n Processor with CPI of 1 if all memory access

handled by the on-chip cache.
n Clock rate 5 GHz (.2 ns period)
n Main memory access time 100ns
n Miss rate for primary cache is 2%

n How much faster if we add a secondary cache
with 5ns access time that reduces the miss
rate (to main memory) to 0.5%.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 81

Analysis without secondary cache

Without the secondary cache the CPI will be
based on:
n the CPI without memory stall (for all except

misses)
n the CPI with a memory stall (just for cache

misses).
n Without a stall the CPI is 1, and this

happens 98% of the time.
n With a stall the CPI is 1 + miss penalty

which is 100/.2 = 500 cycles. This happens
2% of the time.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 82

CPI Calculation (no secondary cache)

Total CPI = Base CPI + Memory-Stall cycles
per instruction
CPI = 1.0 + (2% * 500) = 11.0

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 83

With secondary cache
With secondary cache the CPI will be based on:

n the CPI without memory stall (for all except
misses)

n the CPI with a stall for accessing the secondary
cache (for cache misses that are resolved in the
secondary cache).

n the CPI with a stall for accessing secondary cache
and main memory (for accesses to main memory).

The stall for accessing secondary cache is 5/.2 = 25
cycles.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 84

Total CPI = 1 + Primary stalls per instruction +
Secondary stalls per instruction

= 1 + (2% * 25) + (.5% * 500)
= 1 + 0.5 + 2.5
= 4.0

Processor w/ 2ndary Cache is 11/4 = 2.8x faster!

CPI Calculation (with secondary cache)

Virtual Memory

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 86

Disk caching
n Use main memory as a cache for

magnetic disk.
n We can do this for a number of reasons:

n speed up disk access
n pretend we have more main memory than we

really have.
n support multiple programs easily (each can

pretend it has all the memory).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 87

Our focus
n We will focus on using the disk as a

storage area for chunks of main memory
that are not being used.

n The basic concepts are similar to
providing a cache for main memory,
although we now view part of the hard
disk as being the memory.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 88

Virtual memory
Consider a machine with a 32 bit address

space:
n it probably doesn’t have 232 = 4 GB of main

memory!
n How do we write programs without knowing how

much memory is really available ahead of time?
n Why not pretend we always have 4GB, and if we

use more than we really have, store some blocks
on the hard disk.

n this must happen automatically to be useful.
n Note: 64-bit architectures typically have something

like a 48 bit address or 262144 GB address space
which is ~256 TB

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 89

Motivation
n Pretend we have 4GB, we really have only

512MB.
n At any time, the processor needs only a small

portion of the 4GB memory.
n only a few programs are active
n an active program might not need all the memory

that has been reserved by the program.
n We just keep the stuff needed in the main

memory, and store the rest on disk.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 90

Physical addresses

Disk addresses

Virtual addresses
Address translation

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 91

A Program’s view of memory
n We can write programs that address the

virtual memory.
n There is hardware that translates these

virtual addresses to physical addresses.
n The operating system is responsible for

managing the movement of memory between
disk and main memory, and for keeping the
address translation table accurate.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 92

Terminology
n page: The unit of memory transferred

between disk and the main memory.
n page fault: when a program accesses a

virtual memory location that is not
currently in the main memory.

n address translation: the process of
finding the physical address that
corresponds to a virtual address.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 93

Virtual Memory & Address Translation

Virtual Physical

CPU

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 94

Translation and Pages
n Only the page number need be translated.
n The offset within the page stays constant.

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 95

CPU & address translation

n The CPU doesn’t need to worry about
address translation – this is handled by
the memory system (e.g., MMU)

n As far as the CPU is concerned, it is
using physical addresses.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 96

Advantages of VM
n A program can be written (linked) to use

whatever addresses it wants to! It
doesn’t matter where it is physically
loaded!

n When a program is loaded, it doesn’t
need to be placed in continuous memory
locations
n any group of physical memory pages will do

fine.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 97

Design Issue
n A Page Fault is a disaster!

n disk is very, very, very slow compared to
memory – millions of cycles!

n Minimization of faults is the primary
design consideration for virtual memory
systems.

n This “page” is important! It’s your “fault” if
you miss this point J

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 98

Minimizing faults
n Pages should be big enough to make a

transfer from disk worthwhile. 4KB-
64KB are typical sizes.
n Some systems have 1 to 256 MB page sizes

n Fully associative placement is the most
flexible (will reduce the rate of faults).
n software handles the placement of pages.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 99

What about rights writes?
n Write through is not practical for a

virtual memory system (writes to disk
are way to slow).

n Write back is always used.
n write the entire page to disk only when

kicked out of the main memory and placed
on disk.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 100

The dirty bit
n It would be wasteful to always write an

entire page to disk if nothing in the page
has changed.

n A flag is used to keep track of which
pages have been changed in main
memory (if not change happens, no need
to write the page to disk).

n The flag is called the dirty bit.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 101

Address Translation
n Address translation must be fast (it

happens to every memory access).
n We need a fully associative placement

policy.
n We can’t afford to go looking at every

virtual page to find the right one
n we don’t use the tag bits approach

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 102

Page Table
n We need a large table that holds the

physical address for each virtual page.
n Want virtual page 1234? Look at row

1234 in the table.
n the page table is a big array indexed by

virtual page number.
n The table will be huge! 232/page size.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 103

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 104

Processes and Page Tables
n Each process has it’s own page table!

n each program can pretend it is loaded and
running at the same address.

n One page table is huge, now we need to
worry about lots of page tables.

n We can’t include dedicated hardware
that holds all these page tables.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 105

Page Tables memory needs
n Assume 32 bit virtual address space.
n Assume 16K Byte page size.

n each page table needs 232/214 = 218

elements.
n We would like to support 256 different

processes.
n We need 28 * 218 = 226 page table

elements, assume each is 1 word wide.
n Total needed is 256 MBytes!
n A solution – “Page” the page table.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 106

Page Table Elements
n Each element in the page table needs to

include:
n a valid bit.
n if the page is in memory, the physical

address.
n if the page is on disk, some indication of

where on the disk

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 107

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or
disk address

Figure 7.23

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 108

I need to go buy more memory!
n Page tables are stored in main memory.
n Most programs are small, so we don’t

need to actually create the entire page
table for each process.
n just enough to cover the actual pages that

have been reserved for use by the program.
n this number will be quite small (a few

thousand pages is enough for a large
program).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 109

Speed of address translation
n Page tables are in memory.
n We need to access an element of the

page table every time a translation is
needed.

n A translation is needed on every memory
access!

n Every memory access really requires 2
memory accesses!
n This is very bad .. Especially for your uber-

faster, superscalar pipelined processor!

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 110

Making address translation fast
n We can create a dedicated cache that

holds the most recently used page table
entries.
n the same page table entry is used for all

memory locations in the page. Spatial
Locality.

n This cache is called a Translation
Lookaside Buffer (TLB).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 111

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page
number

Physical page
or disk address

Physical memory

Disk storage

Figure 7.24

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 112

DecStation 3100 TLB
n 32 bit address space
n 4KB Page size

n virtual page address is 20 bits.
n TLB has 64 slots

n each has 20 bit tag, 20 bit physical page
address, a valid bit and a dirty bit.

n fully associative.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 113

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 114

Cache + Virtual Memory
n The Decstation 3100 does address translation

before the cache.
n The cache operates on physical memory

addresses.
n It is also possible to cache virtual memory,

although there are some problems.
n if programs can share pages, a single word from

physical memory could end up in the cache twice!
(the same physical location could have 2 different
virtual addresses).

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 115

Protection
n Virtual memory allows multiple

processes to share the same physical
memory.

n What if my process tries to write to
your process’s memory?
n we don’t want this to be possible!
n we don’t even want it to be able to read!

n We can provide protection via the page
tables

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 116

Independent Page Tables
n Each process has it’s own page table.
n All page tables are created by the

operating system – your program can’t
change it’s own page table.

n Supporting virtual memory requires a
combination of hardware and software.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 117

Common Issues
n There are a number of issues that are

common to both cache and virtual
memory system design:
n block placement policy.
n how is a block found?
n block replacement policy.
n write policy.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 118

Block Placement Options
n Direct-Mapped

n cheap, easy to implement, relatively high
miss rate.

n Set Associative
n middle ground

n Fully Associative
n expensive (lots of hardware or software),

minimizes miss rate.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 119

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB
2 KB
4 KB
8 KB

M
is
s
ra
te

Associativity 16 KB
32 KB
64 KB
128 KB

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 120

How is a block found?
This depends on placement policy.

n Direct Mapped: uses an index.
n Set Associative: index selects a set, and

we need to look at all set elements.
n Fully Associative: need to look at all

elements.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 121

Replacement Policies
n Direct-Mapped: not an issue.
n Set and fully associative

n LRU (least recently used) hard to
implement in hardware for large sets, often
approximated.

n random easy to implement, does nearly as
well as LRU approximations.

n LRU is always used (or approximated)
for virtual memory.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 122

Write Policies
n Write-Through: update the cache and

lower level memory.

n Write-Back: update the cache only.
When block/page is booted from the
cache - write to lower-level memory if
any changes.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 123

Where do misses come from?
n Compulsory misses: the first access is

always a miss. Can’t avoid these.

n Capacity misses: cache can’t hold all the
blocks needed.

n Conflict misses: multiple blocks compete
for the same cache slot(s) and collide.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 124

2
0%

M
is
s
r a
t e
pe
rt
yp
e

2%

4%

6%

8%

10%

12%

14%

1 4 8 16 32 64 128

One-way
Two-way

Cache size (KB) Four-way
Eight-way

Capacity

Miss Rate and the cause of misses.

Compulsory misses are baseline of 0.2%

Ranges show the conflict misses for
various set sizes

Where do misses come from?

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 125

Cache friendly code
(a great name for a band!)

n There are sometimes things you can do
to your program to take advantage of
the cache.
n usually it’s not necessary to know much

about the specific architecture of the
cache on which a program is run.

n The patterns of array element access is
one good example.

CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 126

Matrix Multiplication
for (i=0; i!=500; i++)

for (j=0;j!=500; j++)
for (k=0;k!=500; k++)
x[i][j] = x[i][j] + y[i][k]*z[k][j];

for (k=0; k!=500; k++)
for (j=0;j!=500; j++)

for (i=0;i!=500; i++)
x[i][j] = x[i][j] + y[i][k]*z[k][j];

almost twice as fast on
SGI Mips R4000

