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Memory Technologies: Speed vs. Cost (1997)

Technology Access Time Cost: $/Mbyte
SRAM 5-25ns $100-$250

DRAM 60-120ns $5-$10

Mag. disk 10-20 million ns $0.1-$0.2

Access Time: the length of time it takes to get a value 
from memory, given an address.
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Memory Technologies: Speed vs. Cost (2004)

Technology Access Time Cost: $/Gbyte
SRAM 0.5-5ns $4000-$10K (25x)

DRAM 50-70ns $100-$200 (50x)

Mag. disk 5-20 million ns $0.50-$2.00 (12x)

Observe: access time not changing much over the last 7 
years, but unit cost per capacity has changed dramatically
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Performance and Memory
n SRAM is fast, but too expensive (we 

want large memories!).

n Using only SRAM (enough of it) would 
mean that the memory ends up costing 
more than everything else combined!
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Caching
n The idea is to use a small amount of fast 

memory near the processor (in a cache).

n The cache hold frequently needed 
memory locations.
n when an instruction references a memory 

location, we want that value to be in the 
cache!
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Principles of Locality

Temporal: if a memory location is 
referenced, it is likely that it will be 
referenced again in the near future.

Spatial: if a memory location is referenced, 
it is likely that nearby items will be 
referenced in the near future.
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Programs and Locality
Programs tend to exhibit a great deal of 

locality in memory accesses.
n array, structure/record access
n subroutines (instructions are near each 

other)
n local variables (counters, pointers, etc) are 

often referenced many times.
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Memory Hierarchy
The general idea is to build a hierarchy:

n at the top is a small, fast memory that is 
close to the processor.

n in the middle are larger, slower memories.
n At the bottom is massive memory with very 

slow access time.
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Figure 7.3
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Cache and Main Memory
n For now we will focus on a 2 level 

hierarchy:
n cache (small, fast memory directly 

connected to the processor).
n main memory (large, slow memory at level 2 

in the hierarchy).
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Memory Hierarchy and Data Transfer

Processor

Data are transferred

Transfer of data is done 
between adjacent levels in 
the hierarchy only!

All access by the processor is 
to the topmost level.

Figure 7.2
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Terminology
n hit: when the memory location accessed 

by the processor is in the cache (upper 
level).

n miss: when the memory location 
accessed by the process is not in the 
cache.

n block: the minimum unit of information 
transferred between the cache and the 
main memory. Typically measured in 
bytes or words.
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Terminology (cont.)
n hit rate: the ratio of hits to total 

memory accesses.
n miss rate: 1 – hit rate
n hit time: the time to access an element 

that is in the cache:
n time to find out if it’s in the cache.
n time to transfer from cache to processor.
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Terminology (cont.)
n miss penalty: the time to replace a block 

in the cache with a block from main 
memory and to deliver deliver the 
element to the processor.

n hit time is small compared to miss 
penalty (otherwise we wouldn’t bother 
with a memory hierarchy!)
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Simple Cache Model
n Assume that the processor accesses 

memory one word at a time.
n A block consists of one word.
n When a word is referenced and is not in 

the cache, it is put in the cache (copied 
from main memory).
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Cache Usage
n At some point in time the cache holds 

memory items X1,X2,…Xn-1

n The processor next accesses memory 
item Xn which is not in the cache.
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Cache before and after

a. Before the reference to Xn

X3

Xn –  1

Xn –  2

X1

X4

b. After the reference to Xn

X3

Xn –  1

Xn –  2

X1

X4

Xn

X2X2
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Issues
n How do we know if an item is in the 

cache?

n If it is in the cache, how do we know 
where it is?
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Direct-Mapped Cache
n Each memory location is mapped to a 

single location in the cache.
n there in only one place it can be!

n Remember that the cache is smaller 
than memory, so many memory locations 
will be mapped to the same location in 
the cache.
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Mapping Function
n The simplest mapping is based on the LS 

bits of the address.
n For example, all memory locations whose 

address ends in 000 will be mapped to 
the same location in the cache.

n The requires a cache size of 2n locations 
(a power of 2).
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A Direct Mapped Cache
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Figure 7.5
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Who’s in slot 000?
n We still need a way to find out which of 

the many possible memory elements is 
currently in a cache slot.
n slot: a location in the cache that can hold a 

block.
n We need to store the address of the 

item currently using cache slot 000. 
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Tags
n We don’t need to store the entire 

memory location address, just those 
bits that are not used to determine the 
slot number (the mapping).

n We call these bits the tag.

n The tag associated with a cache slot 
tells who is currently using the slot.
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16 word memory, 4 word cache

0000
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0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Data Tags
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Initialization Problem
n Initially the cache is empty. 

n all the bits in the cache (including the tags) 
will have random values.

n After some number of accesses, some 
of the tags are real and some are still 
just random junk.

n How do we know which cache slots are 
junk and which really mean something?
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Valid Bits
n Include one more bit with each cache slot 

that indicates whether the tag is valid or not.
n Provide hardware to initialize these bits to 0 

(one bit per cache slot).
n When checking a cache slot for a specific 

memory location, ignore the tag if the valid 
bit is 0.

n Change a slot’s valid bit to a 1 when putting 
something in the slot (from main memory).
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Revised Cache

0000
0001
0010
0011
0100
0101
0110
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1000
1001
1010
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Simple Simulation
n We can simulate the operation of our 

simple direct-mapped cache by listing a 
sequence of memory locations that are 
referenced.

n Assume the cache is initialized with all 
the valid bits set to 0 (to indicate all 
the slots are empty).
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Memory Access Sequence

Address Binary Address Slot hit or miss
3 0011 11 (3) miss
8 1000 00 (0) miss
3 0011 11 (3) hit
2 0010 10 (2) miss
4 0100 00 (0) miss
8 1000 00 (0) miss
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Hardware
n We need to have hardware that can 

perform all the operations:
n find the right slot given an address 

(perform the mapping).
n check the valid bit.
n compare the tag to part of the address
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Address (showing bit posi tions)

20 10

Byte
off set

V alid Tag Da taIndex
0
1
2

1021
1022
1023

Tag

Index

Hi t Data

20 32

31 30 13 12 11 2 1 0
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Possible Test Question

Given the following:
n 32 bit addresses (232 byte memory, 230 words)
n 64 KB cache (16 K words). Each slots holds 1 word.
n Direct Mapped Cache.

n How many bits are needed for each tag?
n How many memory locations are mapped to the 

same cache slot? 
n How many total bits in the cache (data + tag + 

valid). 
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Possible Test Answer

n Memory has 230 words
n Cache has 16K = 214 slots (words).
n Each cache slot can hold any one of  230 ¸

214 = 216 memory locations, so the tag must 
be 16 bits.

n 216 is 64K memory locations that map to 
the same cache slot.

n Add one for the valid bit for each cache 
line.

n Total memory in bits = 214 x (32+16+1) = 49 
x 16K = 784 Kbits  (98 Kbytes!)
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Handling a Cache Miss
n A miss means the processor must wait 

until the memory requested is in the 
cache.
n a separate controller handles transferring 

data between the cache and memory.
n In general the processor continuously 

tries the fetch until it works (until it’s a 
hit).
n continuously means “once per cycle”.
n in the meantime the pipeline is stalled!
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Data vs. Instruction Cache
n Obviously nothing other than a stall can 

happen if we get a miss when fetching 
the next instruction!

n It is possible to execute other 
instructions while waiting for data (need 
to detect data hazards), this is called 
stall on use.
n the pipeline stalls only when there are no 

instructions that can execute without the 
data.
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DecStation 3100 Cache
n Simple Cache implementation

n 64 KB cache (16K words).
n 16 bit tags
n Direct Mapped
n Two caches, one for instructions and the 

other for data.
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A d d r e s s ( s h o w i n g b i t p o s i t i o n s )

1 6 1 4 B y t e

o f f s e t

V a l i d T a g D a t a

H i t D a t a

1 6 3 2

1 6 K

e n t r i e s

1 6 b i t s 3 2 b i t s

3 1 3 0 1 7 1 6 1 5 5 4 3 2 1 0

DecStation 3100 cache
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Handling Writes
n What happens when a store 

instruction is executed?
n what if it’s a hit?
n what if it’s a miss?

n DecStation 3100 does the following:
n don’t bother checking the cache, just 

write the new value in to the cache!
n Also write the word to main memory 

(called write-through).
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Write-Through
n Always updating main memory on each store 

instruction can slow things down!
n the memory is tied up for a while.

n It is possible to set up a write buffer that 
holds a number of pending writes.

n If we also update the cache, it is not likely 
that we need to worry about getting a memory 
value from the buffer (but it’s possible!)
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Write-back
n Another scheme for handling writes:

n only update the cache.
n when the memory location is booted out of 

the cache (someone else is being put in to 
the same slot), write the value to memory.



CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 41

Cache Performance

For the simple DecStation 3100 cache:

Miss Rate
Program Instruction Data Combined
gcc 6.1% 2.1% 5.4%

spice 1.2% 1.3% 1.2%
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Spatial Locality?
n So far we’ve only dealt with temporal 

locality (it we access an item, it is likely 
we will access it again soon).

n What about space (the final frontier)?
n In general we make a block hold more than a 

single word.
n Whenever we move data to the cache, we 

also move it’s neighbors.
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Blocks and Slots
n Each cache slot holds one block.
n Given a fixed cache size (number of 

bytes) as the block size increases, the 
number of slots must decrease.

n Reducing the number of slots in the 
cache increases the number of memory 
locations that compete for the same 
slot.
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Example multi-word block cache

n 4 words/block
n we now use a block address to determine 

the slot mapping.
n the block address in this case is the 

address/4.
n on a hit we need to extract a single word 

(need a multiplexor controlled by the LS 
2 address bits).

n 64KB data
n 16 Bytes/block
n 4K slots.
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Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

Example multi-word block cache
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Performance and Block Size

Block Miss Rate
Program Size Instruction Data Combined
gcc 1 6.1% 2.1% 5.4%
gcc 4 2.0% 1.7% 1.9%
spice 1 1.2% 1.3% 1.2%
spice 4 0.3% 0.6% 0.4%

DecStation 3100 cache with block sizes 1 and 
4 (words).
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Is bigger always better?
n Eventually increasing the block size will 

mean that the competition for cache 
slots is too high
n miss rate will increase.

n Consider the extreme case: the entire 
cache is a single block!
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Miss rate vs. Block Size
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Block Size and Miss Time
n As the block size increases, we need to worry 

about what happens to the miss time.
n The larger a block is, the longer it takes to 

transfer from main memory to cache.

n It is possible to design memory systems with 
transfer of an entire block at a time, but only 
for relatively small block sizes (4 words).
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Example Timings
Hypothetical access times:

n 1 cycle to send the address
n 15 cycles to initiate each access
n 1 cycle to transfer each word.

n Miss penalty for 4-word wide memory is:
1 + 4x15 + 4x1 = 65 cycles.
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Memory Organization Options
CPU

Cache

Bus

Memory

a. One-word-wide
memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

Improving memory bandwidth….
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Improving Cache Performance
n Cache performance is based on two 

factors:
n miss rate

n depends on both the hardware and on the 
program being measured (miss rate can vary).

n miss penalty
n the penalty is dictated by the hardware (the 

organization of memory and memory access 
times).
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Cache and CPU Performance
The total number of cycles it takes for a 

program is the sum of:
n number of normal instruction execution 

cycles.
n number of cycles stalled waiting for 

memory.

penaltyMissrateMiss
ogramPr
AccessesMemorycyclesstallMemory ××=−
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Cache Calculations
How much faster would this program run 

with a perfect cache?:
CPI (without memory stalls): 2
Miss Rate: 5%
Miss Penalty: 40 cycles
% of instructions that are load/store: 30%
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Speedup Calc
Timeperfect=IC * 2 (cpi) * cycle time

= IC * 2.0

Timecache=IC*( 0.3*(2+0.05*40) + 0.7*2 )
= IC * 2.6

Speedup: 2.6/2 = 1.3 times faster with a 
perfect cache.
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Clock Rate and Cache Performance

n If we double the clock rate of the 
processor, we don’t change:
n cache miss rate
n miss penalty (memory is not likely to 

change!).

n The cache will not improve, so the 
speedup is not close to double!



CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 57

Reducing Miss Rate
n Obviously a larger cache will reduce the 

miss rate!
n We can also reduce miss rate by 

reducing the competition for cache 
slots. 
n allow a block to be placed in one of many 

possible cache slots.
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An extreme example of how to mess up a direct 
mapped cache.

n Assume that every 64th memory element 
maps to the same cache slot.

for (i=0;i<10000;i++) {
a[i] = a[i] + a[i+64] + a[i+128];
a[i+64] = a[i+64] + a[i+128];

}

a[i], a[i+64] and a[i+128] use the same 
cache slot!
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Fully Associative Cache
n Instead of direct mapped, we allow any 

memory block to be placed in any cache 
slot. 

n It’s harder to check for a hit (hit time 
will increase).

n Requires lots more hardware (a 
comparator for each cache slot).

n Each tag will be a complete block 
address.
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Fully Associative Cache

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Data Tags

Valid
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Tradeoffs
n Fully Associate is much more flexible, so 

the miss rate will be lower.
n Direct Mapped requires less hardware 

(cheaper).
n will also be faster! i.e. better hit time!

n Tradeoff of miss rate vs. hit time.
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Middle Ground
n We can also provide more flexibility without 

going to a fully associative placement policy.
n For each memory location, provide a small 

number of cache slots that can hold the 
memory element. 

n This is much more flexible than direct-
mapped, but requires less hardware than fully 
associative.
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Set Associative
n A fixed number of locations where each 

block can be placed.
n n-way set associative means there are n

places (slots) where each block can be 
placed.

n Chop up the cache in to a number of 
sets each set is of size n.
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Block Placement Options
(memory block address 12)

1
2

Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1
2

Tag

Data

Set # 0 1 2 3

Search

Set associative

1
2

Tag

Data

Search

Fully associative

Figure 7.15
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Possible 8-block Cache designs

T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a ta T a g D a ta T a g D a ta T a g D a t a

E i g h t - w a y s e t a s s o c ia t iv e ( fu l l y a s s o c i a t i v e )

T a g D a t a Ta g D a ta T a g D a ta T a g D a ta

F o u r - w a y s e t a s s o c ia t iv e

S e t

0

1

T a g D a t a

O n e - w a y s e t a s s o ci a t iv e

( d i r e c t m a p p e d )

B lo c k

0

7

1

2

3

4

5

6

T a g D a t a

T w o - w a y s e t a s s o ci a t iv e

S e t

0

1

2

3

T a g D a ta
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Block Addresses & Set Associative Caching

n The LS bits of block address is used to 
determine which set the block can be 
placed in.

n The rest of the bits must be used for 
the tag.

Tag Index Block Offset

block address

32 bit byte address

The index is the
set number
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Possible Test Question
n Block Size: 4 words
n Cache size (data only): 64 K Bytes
n 8-way set associative (each set has 8 slots).
n 32 bit address space (bytes).

n How many sets are there in the cache?
n How many memory blocks compete for 

placement in each set?
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Answer
Cache size:

64 K Bytes is 216 bytes
216 bytes is 214 words
214 words is 211 sets of 8 blocks each

Memory Size:
232 bytes = 230 words = 228 blocks

blocks per set:
228/211 = 217 blocks per set
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4-way Set Associative Cache
Address

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0
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4-way set associative and the 
extreme example.

for (i=0;i<10000;i++) {
a[i] = a[i] + a[i+64] + a[i+128];
a[i+64] = a[i+64] + a[i+128];

}

a[i], a[i+64] and a[i+128] belong to the 
same set – that’s OK, we can hold all 3 in 
the cache at the same time.
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Performance Comparison
Miss Rate

Program Associativity Instructio
n

Data Combined

gcc 1 (direct) 2.0% 1.7% 1.9%
gcc 2 1.6% 1.4% 1.5%
gcc 4 1.6% 1.4% 1.5%
spice 1 (direct) 0.3% 0.6% 0.4%
spice 2 0.3% 0.6% 0.4%
spice 4 0.3% 0.6% 0.4%

DecStation 3100 cache with block size 4 words.
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A note about set associativity
n Direct mapped is really just 1-way set 

associative (1 block per set).

n Fully associative is n-way set 
associative, where n is the number of 
blocks in the cache.
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Question
Cache size 4K blocks.
block size 4 words (16 bytes)
32 bit address
n How many bits for storing the tags (for the 

entire cache), if the cache is:
n direct mapped
n 2-way set associative
n 4-way set associative
n fully associative
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Answer

Direct Mapped:
16 * 4K = 64K bits

2-way:
17 * 4K = 68K bits 

4-way:
18 * 4K = 72K bits 

Fully Associative:
28 * 4K = 112K bits 

tag index offset
16 12 4

tag index offset
17 11 4

tag index offset
18 10 4

tag offset
28 4
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Block Replacement Policy
n With a direct mapped cache there is no 

choice which memory element gets 
removed from the cache when a new 
element is moved to the cache.

n With a set associative cache, eventually 
we will need to remove an element from 
a set.
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Replacement Policy: LRU
LRU: Least recently used. 

n keep track of how old each block is (the 
blocks in the cache).

n When we need to put a new element in the 
cache, use the slot occupied by the oldest 
block.

n Every time a block in the cache is accessed 
(a hit), set the age to 0.

n Increase the age of all blocks in a set 
whenever a block in the set is accessed.
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LRU in hardware
n We must implement this strategy in 

hardware!
n 2-way is easy, we need only 1 bit to keep 

track of which element in the set is 
older.

n 4-way is tougher (but possible).
n 8-way requires too much hardware 

(typically LRU is only approximated).
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Multilevel Caches
n Most modern processors include an on-

chip cache (the cache is part of the 
processor chip).

n The size of the on-chip cache is 
restricted by the size of the chip!

n Often, a secondary cache is used 
between the on-chip cache and the main 
memory.
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Adding a secondary cache
n Typically use SRAM (fast, expensive). 

Miss penalty is much lower than for main 
memory.

n Using a fast secondary cache can change 
the design of the primary cache:
n make the on-chip cache hit time as small as 

possible!
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Performance Analysis
n Processor with CPI of 1 if all memory access 

handled by the on-chip cache.
n Clock rate 5 GHz (.2 ns period)
n Main memory access time 100ns
n Miss rate for primary cache is 2%

n How much faster if we add a secondary cache 
with 5ns access time that reduces the miss 
rate (to main memory) to 0.5%.
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Analysis without secondary cache

Without the secondary cache the CPI will be 
based on:
n the CPI without memory stall (for all except 

misses)
n the CPI with a memory stall (just for cache 

misses).
n Without a stall the CPI is 1, and this 

happens 98% of the time.
n With a stall the CPI is 1 + miss penalty 

which is 100/.2 = 500 cycles. This happens 
2% of the time.
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CPI Calculation (no secondary cache)

Total CPI = Base CPI + Memory-Stall cycles 
per instruction
CPI = 1.0 + (2% * 500) = 11.0
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With secondary cache
With secondary cache the CPI will be based on:

n the CPI without memory stall (for all except 
misses)

n the CPI with a stall for accessing the secondary 
cache (for cache misses that are resolved in the 
secondary cache).

n the CPI with a stall for accessing secondary cache 
and main memory (for accesses to main memory).

The stall for accessing secondary cache is 5/.2 = 25 
cycles.
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Total CPI = 1 + Primary stalls per instruction +
Secondary stalls per instruction

= 1 + (2% * 25) + (.5% * 500)
= 1 + 0.5 + 2.5
= 4.0

Processor w/ 2ndary Cache is 11/4 = 2.8x faster! 

CPI Calculation (with secondary cache)



Virtual Memory 
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Disk caching
n Use main memory as a cache for 

magnetic disk.
n We can do this for a number of reasons:

n speed up disk access
n pretend we have more main memory than we 

really have.
n support multiple programs easily (each can 

pretend it has all the memory).
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Our focus
n We will focus on using the disk as a 

storage area for chunks of main memory 
that are not being used.

n The basic concepts are similar to 
providing a cache for main memory, 
although we now view part of the hard 
disk as being the memory.
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Virtual memory
Consider a machine with a 32 bit address 

space:
n it probably doesn’t have 232 = 4 GB of main 

memory!
n How do we write programs without knowing how 

much memory is really available ahead of time?
n Why not pretend we always have 4GB, and if we 

use more than we really have, store some blocks 
on the hard disk.

n this must happen automatically to be useful.
n Note: 64-bit architectures typically have something 

like a 48 bit address or 262144 GB address space 
which is ~256 TB
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Motivation
n Pretend we have 4GB, we really have only 

512MB.
n At any time, the processor needs only a small 

portion of the 4GB memory.
n only a few programs are active
n an active program might not need all the memory 

that has been reserved by the program.
n We just keep the stuff needed in the main 

memory, and store the rest on disk.
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Physical addresses

Disk addresses

Virtual addresses
Address translation
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A Program’s view of memory
n We can write programs that address the 

virtual memory.
n There is hardware that translates these 

virtual addresses to physical addresses.
n The operating system is responsible for 

managing the movement of memory between 
disk and main memory, and for keeping the 
address translation table accurate.
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Terminology
n page: The unit of memory transferred 

between disk and the main memory.
n page fault: when a program accesses a 

virtual memory location that is not 
currently in the main memory.

n address translation: the process of 
finding the physical address that 
corresponds to a virtual address.



CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 93

Virtual Memory & Address Translation

Virtual Physical

CPU
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Translation and Pages
n Only the page number need be translated.
n The offset within the page stays constant.

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation
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CPU & address translation

n The CPU doesn’t need to worry about 
address translation – this is handled by 
the memory system (e.g., MMU)

n As far as the CPU is concerned, it is 
using physical addresses.
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Advantages of VM
n A program can be written (linked) to use 

whatever addresses it wants to! It 
doesn’t matter where it is physically 
loaded!

n When a program is loaded, it doesn’t 
need to be placed in continuous memory 
locations
n any group of physical memory pages will do 

fine.
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Design Issue
n A Page Fault is a disaster!

n disk is very, very, very slow compared to 
memory – millions of cycles!

n Minimization of faults is the primary 
design consideration for virtual memory 
systems.

n This “page” is important! It’s your “fault” if 
you miss this point J
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Minimizing faults
n Pages should be big enough to make a 

transfer from disk worthwhile. 4KB-
64KB are typical sizes.
n Some systems have 1 to 256 MB page sizes

n Fully associative placement is the most 
flexible (will reduce the rate of faults).
n software handles the placement of pages.
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What about rights writes?
n Write through is not practical for a 

virtual memory system (writes to disk 
are way to slow). 

n Write back is always used.
n write the entire page to disk only when 

kicked out of the main memory and placed 
on disk.
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The dirty bit
n It would be wasteful to always write an 

entire page to disk if nothing in the page 
has changed.

n A flag is used to keep track of which 
pages have been changed in main 
memory (if not change happens, no need 
to write the page to disk).

n The flag is called the dirty bit.
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Address Translation
n Address translation must be fast (it 

happens to every memory access).
n We need a fully associative placement 

policy.
n We can’t afford to go looking at every 

virtual page to find the right one
n we don’t use the tag bits approach
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Page Table
n We need a large table that holds the 

physical address for each virtual page.
n Want virtual page 1234? Look at row 

1234 in the table.
n the page table is a big array indexed by 

virtual page number.
n The table will be huge! 232/page size.
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Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0
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Processes and Page Tables
n Each process has it’s own page table!

n each program can pretend it is loaded and 
running at the same address.

n One page table is huge, now we need to 
worry about lots of page tables.

n We can’t include dedicated hardware 
that holds all these page tables.
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Page Tables memory needs
n Assume 32 bit virtual address space.
n Assume 16K Byte page size.

n each page table needs 232/214 = 218

elements.
n We would like to support 256 different 

processes.
n We need 28 * 218 = 226 page table 

elements,  assume each is 1 word wide.
n Total needed is 256 MBytes!
n A solution – “Page” the page table.
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Page Table Elements
n Each element in the page table needs to 

include:
n a valid bit.
n if the page is in memory, the physical 

address.
n if the page is on disk, some indication of 

where on the disk
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Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or
disk address

Figure 7.23
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I need to go buy more memory!
n Page tables are stored in main memory.
n Most programs are small, so we don’t 

need to actually create the entire page 
table for each process.
n just enough to cover the actual pages that 

have been reserved for use by the program.
n this number will be quite small (a few 

thousand pages is enough for a large 
program).
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Speed of address translation
n Page tables are in memory.
n We need to access an element of the 

page table every time a translation is 
needed.

n A translation is needed on every memory 
access!

n Every memory access really requires 2 
memory accesses!
n This is very bad .. Especially for your uber-

faster, superscalar pipelined processor!
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Making address translation fast
n We can create a dedicated cache that 

holds the most recently used page table 
entries.
n the same page table entry is used for all 

memory locations in the page. Spatial 
Locality.

n This cache is called a Translation 
Lookaside Buffer (TLB).
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Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page
number

Physical page
or disk address

Physical memory

Disk storage

Figure 7.24
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DecStation 3100 TLB
n 32 bit address space
n 4KB Page size

n virtual page address is 20 bits.
n TLB has 64 slots

n each has 20 bit tag, 20 bit physical page 
address, a valid bit and a dirty bit. 

n fully associative.
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Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0
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Cache + Virtual Memory
n The Decstation 3100 does address translation 

before the cache.
n The cache operates on physical memory 

addresses.
n It is also possible to cache virtual memory, 

although there are some problems.
n if programs can share pages, a single word from 

physical memory could end up in the cache twice! 
(the same physical location could have 2 different 
virtual addresses).
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Protection
n Virtual memory allows multiple 

processes to share the same physical 
memory.

n What if my process tries to write to 
your process’s memory?
n we don’t want this to be possible!
n we don’t even want it to be able to read!

n We can provide protection via the page 
tables
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Independent Page Tables
n Each process has it’s own page table.
n All page tables are created by the 

operating system – your program can’t 
change it’s own page table.

n Supporting virtual memory requires a 
combination of hardware and software.
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Common Issues
n There are a number of issues that are 

common to both cache and virtual 
memory system design:
n block placement policy.
n how is a block found?
n block replacement policy.
n write policy.
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Block Placement Options
n Direct-Mapped

n cheap, easy to implement, relatively high 
miss rate.

n Set Associative
n middle ground

n Fully Associative
n expensive (lots of hardware or software), 

minimizes miss rate.
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How is a block found?
This depends on placement policy.

n Direct Mapped: uses an index.
n Set Associative: index selects a set, and 

we need to look at all set elements.
n Fully Associative: need to look at all 

elements.
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Replacement Policies
n Direct-Mapped: not an issue.
n Set and fully associative

n LRU (least recently used) hard to 
implement in hardware for large sets, often 
approximated.

n random easy to implement, does nearly as 
well as LRU approximations.

n LRU is always used (or approximated) 
for virtual memory.



CSCI-2500 FALL 2009, Memory Hierarchy (Ch 5) — 122

Write Policies
n Write-Through: update the cache and 

lower level memory.

n Write-Back: update the cache only. 
When block/page is booted from the 
cache - write to lower-level memory if 
any changes.
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Where do misses come from?
n Compulsory misses: the first access is 

always a miss. Can’t avoid these.

n Capacity misses: cache can’t hold all the 
blocks needed.

n Conflict misses: multiple blocks compete 
for the same cache slot(s) and collide.
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Where do misses come from?
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Cache friendly code
(a great name for a band!)

n There are sometimes things you can do 
to your program to take advantage of 
the cache.
n usually it’s not necessary to know much 

about the specific architecture of the 
cache on which a program is run.

n The patterns of array element access is 
one good example.
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Matrix Multiplication
for (i=0; i!=500; i++)

for (j=0;j!=500; j++)
for (k=0;k!=500; k++)
x[i][j] = x[i][j] + y[i][k]*z[k][j];

for (k=0; k!=500; k++)
for (j=0;j!=500; j++)

for (i=0;i!=500; i++)
x[i][j] = x[i][j] + y[i][k]*z[k][j];

almost twice as fast on 
SGI Mips R4000


